
Orientable Textures for Image-Based Pen-and-Ink Illustration

Michael P. Salisbury Michael T. Wong John F. Hughes� David H. Salesin

University of Washington �GVSTC

Abstract

We present an interactive system for creating pen-and-ink-style line
drawings from greyscale images in which the strokes of the ren-
dered illustration follow the features of the original image. The user,
via new interaction techniques for editing a direction field, specifies
an orientation for each region of the image; the computer draws ori-
ented strokes, based on a user-specified set of example strokes, that
achieve the same tone as the image via a new algorithm that com-
pares an adaptively-blurred version of the current illustration to the
target tone image. By aligning the direction field with surface orien-
tations of the objects in the image, the user can create textures that
appear attached to those objects instead of merely conveying their
darkness. The result is a more compelling pen-and-ink illustration
than was previously possible from 2D reference imagery.

CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation — Display algorithms. I.4.3 [Image
Processing] Enhancement — Filtering

Additional Key Words: Controlled-density hatching, direction
field, image-based rendering, non-photorealistic rendering, scale-
dependent rendering, stroke textures.

1 Introduction

Illustrations offer many advantages over photorealism, including
their ability to abstract away detail, clarify shapes, and focus at-
tention. In recent years, a number of systems have been built to
produce illustrations in a pen-and-ink style. These systems can
be classified into two broad categories, depending on their input:
geometry-based systems[1, 2, 7, 12, 16, 17, 18], which take 3D
scene descriptions as input; andimage-based systems[10, 13],
which produce their illustrations directly from greyscale images.
The main advantage of geometry-based systems is that—because
they have full access to the 3D geometry and viewing information—
they can produce illustrations whose strokes not only convey the
tone and texture of the surfaces in the scene, but—by placing
strokes along the natural contours of surfaces—they can also con-
vey the 3D forms of the surfaces. Existing image-based systems, on
the other hand, have no knowledge of the underlying geometry or
viewing transformations behind the images they are rendering, and
until now have been able to convey 3D information only by having
a user draw individual strokes or specify directions for orienting
particular collections of strokes across the image.

University of Washington, Box 352350, Seattle, WA 98195-2350
f salisburj mtwongj salesing@cs.washington.edu
�NSF STC for Computer Graphics and Scientific Visualization,
Brown University Site, PO Box 1910, Providence, RI 02912
jfh@cs.brown.edu

Figure 1 The three components of a layer are from left to right
tone, direction, and a stroke example set. An illustration (far right)
is rendered based upon one or more such layers.

Figure 2 A tree with curved strokes for leaves and straight strokes
for branches and trunk.

In this paper, we introduce the notion of “orientable textures” and
show how they can be used to readily convey 3D information in
an image-based system for pen-and-ink illustration. In our interac-
tive system, a user creates an illustration from a reference image
by specifying three components: a greyscaletarget imagethat de-
fines the desired tone at every point in the illustration, adirection
field that defines the desired orientation of texture at every point,
and astroke example set, or set of strokes, to fill in the tone areas
(see figures 1 and 2). Given these three components and a scale
for the final illustration, the system creates anorientable texture—
generated procedurally—that conveys the tone, texture, and forms
of the surfaces in the scene. An illustration is composed of one or
more such layers of orientable textures, allowing an illustration to
be rendered with several, potentially overlapping, types of strokes.

The ability to generate comparable illustrations with an image-
based system rather than a geometry-based system offers several
advantages. First, using an image-based system greatly reduces the
tasks of geometric modeling and of specifying surface reflectance
properties, allowing much more complicated models (such as furry
creatures and human faces) to be illustrated. Second, an image-
based system provides the flexibility of usingany type of physical
photograph, computer-generated image, or arbitrary scalar, vector,
or tensor field as input, allowing visualization of data that is not nec-
essarily even physical in nature. Finally, image-based systems offer
more direct user control: the ability to much more easily modify
tone, texture, or stroke orientation with an interactive digital-paint-
style interface.

Although this paper is, to our knowledge, the first to use ori-
entable textures for image-based pen-and-ink illustration (in which
the strokes must convey not only orientation, but texture and tone),
the idea of orienting strokes for illustration dates back at least as far

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.



as the seminal papers by Saito and Takahashi [11] and Haeberli [6]
in SIGGRAPH 90. Winkenbach and Salesin [17] and Meier [9] also
make use of oriented strokes for geometry-based illustration.

Supporting orientable textures for image-based pen-and-ink illus-
tration requires solutions to several new subproblems, which we
discuss in this paper. These problems include: creating interactive
techniques that facilitate the specification of the kind of piecewise-
continuous vector fields required for illustration; rendering strokes
and stroke textures according to a vector field in such a way that
they also produce the proper texture and tone; and efficiently esti-
mating tone as new oriented strokes are progressively applied.

The next section describes the user interface for specifying the com-
ponents of an illustration. Section 3 discusses the rendering of illus-
trations with oriented textures. Section 4 presents our results.

2 The interactive system

We provide an editor, similar to a conventional paint program, that
allows the user to interactively alter the tone and direction compo-
nents of a layer.1 The user can view and edit arbitrary portions of a
component at varying levels of zoom, superimpose multiple com-
ponents, and paint directions directly on top of the target image. For
an example of the high-level control afforded by our system, refer
to figure 3.

Editing tone.Our tone editor is similar to existing paint programs.
It supports lightening, darkening, and other image-processing op-
erations, as well as painting. The user can load a reference image
and designate it as a “cloning source.” Selected portions of this ref-
erence may then be painted into a given layer’s tone component.
Tone may also be transferred between layers by painting. A nega-
tive cloning brush allows the user to freely and creatively reverse
tonal relationships in a reference image.

Editing direction. Since we represent a direction field as a grid of
direction values, much like an image of pixels, the direction-field
editor is similar to the tone editor.2

The user “paints” directions on the image with a collection of tools,
a few of which we describe here. The basic tool is thecomb, which
changes the directions of pixels beneath the cursor to match the
direction of motion of the cursor. If a user wishes to smooth out
discontinuities in the direction field, there is ablending toolthat
smooths a region of directions by convolving each point under the
brush with a 3� 3 filter.3 There are also various region-filling tools.
One tool lets the user fill a region with a constant direction. Another
providesinterpolated fill: the user draws two curves, after which the
region between them is filled with directions that are tangents of
linear interpolants of the curves. A third providessource fill, which
orients directions away from a selected point.

The current state of the direction field is shown in two ways: first,
a grid of line segment indicators covers the image and everywhere
points in the direction of the field; second, a color-coded direction
image is superimposed on the tone image

Applying the stroke example set.A strokeis a mark to be placed
on the page. Each stroke isoriented, in the sense that it can be ro-
tated to any angle to follow the direction field where it is placed.
The stroke example setis a collection of strokes, all drawn with
respect to the vertical orientation, that serve as prototypes for the
strokes in the final image. Each such stroke is represented as a cubic

1The stroke example set is created in a separate program and can be
loaded by name.

2We represent directions as values from 0 to 255, with 0 down, 128
up, and values increasing counter-clockwise. The resolution of the direction
grid is the same as that of the tone image.

3We filter directions by first converting them into unit vectors,
then performing a weighted sum of those vectors with the weights
(1, 2, 1; 2, 4, 2; 1, 2, 1), and then converting the resulting vector back into a
direction.

(a)

(b)

(c)

(d)

(e)

Figure 3 The steps in specifying the direction field for a paintbrush
illustration. Shown in inset at various stages during the develop-
ment of the illustration are, on the left, the user interface, and on
the right, the corresponding rendered illustration. By default, the di-
rection field is oriented downward. In (a) we see the effect of an in-
terpolated fill between two lines on either side of the brush bristles.
Panel (b) shows the state of the direction field and illustration af-
ter some irregularities were introduced to the bristles by nine coarse
strokes of the direction comb along the length of the bristles, and
thirty fine strokes at the bristle tips. Panel (c) shows the state of the
brush handle after interpolating fills between four curves drawn to
reflect its surface orientation. In (d), the last section of the direction
field covering the metal ferrule has been defined with three interpo-
lating fills. Panel (e) shows the completed brush illustration.

B-spline with knot sequence (0, 0, 0, 1, 2,: : : ,n� 1,n, n, n), mak-
ing it endpoint-interpolating. Thus a stroke example set for “par-
allel hatching” would contain many nearly vertical line segments,
as shown in the third panel of figure 1, while for the leaves in fig-
ure 2, the strokes are wavy to suggest the edges of masses of foliage.
When a stroke is drawn at a point in the illustration, it is rotated so
that the vertical vector in the stroke texture aligns with the direction
vector at that point; it is further warped so that this relation is true
all along the stroke (see Section 3.1).

The repeated use of strokes from the example set to achieve tone
with a specified orientation is a kind of procedural stroke tex-
ture. Non-procedural stroke textures were used by Salisburyet
al. [13, 14]. In this previous work, the textures tiled the plane, and
the stroke selected for drawing at a point was the one that hap-
pened to pass through that point. By contrast, in this new system the
placement of strokes on the final illustration is independent of their
relative position in the texture. Spacing between strokes is instead
maintained indirectly by the rendering system (see Section 3). Dy-
namic placement of strokes is an important feature, for if we have



Figure 4 Magnifying a low-resolution direction field using (left)
a standard symmetric resampling kernel, and (right) the modified
kernel used by Salisburyet al. [14]. The same sharp tone component
was used for both illustrations.

a direction field that diverges (say, for drawing the water spraying
outwards from a fountain) and a stroke texture of parallel straight-
line strokes that we wish to have follow the diverging field, a sim-
ple plane-tiling will not follow the field, and an embedding of the
stroke texture thatdoesfollow the field will be stretched at the di-
vergent end, necessarily causing the strokes to become more sparse.
By contrast, our new method will insert additional strokes as the
field widens, thus maintaining the density. In trade for this, we lose
the texture-wide coherence that was available in our previous work.

3 Rendering

Once the user has specified the three components of a layer (tone,
direction, and texture) our pen-and-ink renderer combines all of the
components of each layer to generate the pen strokes of the final
illustration. The user need only be concerned with the overall high-
level aspects of the illustration such as tone and stroke direction;
the system does the tedious work of placing all the strokes. Besides
providing easy control over essential elements of an illustration,
this separation of components until rendering allows us to produce
illustrations at any size by first rescaling the components and then
rendering, as described by Salisburyet al. [14]. Figure 4 demon-
strates magnification of the direction field that respects edge dis-
continuities.

The rendering process is driven by a notion of “importance.” We
define theimportanceof a point as the fraction of its intended dark-
ness that has not yet been accumulated at that point. By drawing
in order of importance, we make all areas approach their target
darkness at the same rate. Rendering therefore consists, roughly, of
looking for the location with greatest importance, placing a stroke
there, updating an image that records the importance, and repeating,
until the importance everywhere is below a termination threshold.
Each step of the process has subtleties, which are discussed below.

Matching the illustration to the target.We aim to place strokes
in the illustration so that the tone of the illustration “matches” that
of the tone image. Matching is necessarily approximate, because
the illustration is purely black and white, whereas the tone image
is greyscale. To facilitate this approximate matching, we think of
each stroke as adding darkness to aregionof the illustration. More-
over, since strokes in dark areas will be closely spaced and those in
light areas will be sparse, the size of each region must be inversely
proportional to the darkness. One way of spreading the darkness
of a stroke over a region is to blur the image of the stroke when
considering the effect of its darkness. To measure the progress of
our illustration towards the target image, we therefore compare a
blurred version of the illustration with the tone image, where the
blurring consists of applying averaging filters of variable size across
the illustration, with the size increasing with the target lightness in a
region. The diameter of the blurring filter is the same as the average
inter-stroke distance required to achieve the target lightness.

We record our success at matching the illustration to the tone im-
age by maintaining adifference image, updated after each stroke is
drawn, whose value at each pixel is the difference between the tone
image and a blurred version of the illustration. Theimportance im-
age is derived from the difference image; its value at each point is

Figure 5 Stacked books (after illustration by Frank Lohan [8].)

the current difference divided by the initial value of the difference.4

Drawing strokes in the right place.One of the basic rules of pen-
and-ink illustration is that strokes should be placed evenly: close
together in dark areas, widely spaced in light areas [8]. In the com-
putation of the difference image, the importance-image values at
points within some distance of a stroke are lowered when the stroke
is drawn, with points near the stroke being lowered most; the size
of the region affected is determined by the target tone (see Sec-
tion 3.2). This algorithm tends to maintain stroke separation.

To help determine where to draw the next stroke, i.e., the location
with greatest importance, we maintain a quadtree on the importance
image, updated locally whenever a stroke is drawn.

Deciding when to stop.We do not actually try to drive the impor-
tance image to zero: even our filtered version of the strokes cannot
hope to match the values in the tone image exactly. Instead, we try
to drive the importance image to within a narrow tolerance around
zero.5 When the maximum value in the importance image is below
a termination threshold, the renderer declares the illustration com-
plete and stops drawing strokes.

3.1 Drawing a Stroke

The lowest-level activity is the actual drawing of a stroke, in itself
a complex task. Once the algorithm knows where to place it, the
stroke must be oriented, bent, and drawn. It must also be clipped if
extending it further would make the illustration too dark. We dis-
cuss these processes in turn.

Orienting and bending.To start, the algorithm randomly selects
a prototype stroke from the stroke example set. We would like to
map this stroke into the direction field so that, at every point along
its length, the stroke’s new angle relative to the direction field is
the same as the prototype stroke’s angle with respect to the vertical
direction. Since this mapped stroke is not easy to find, we approxi-
mate it by mapping the control hull of the prototype stroke into the
direction field in an angle-preserving way, as described below. This
process produces a mapped stroke that is close to our ideal stroke
and is easy to compute, although it is thecontrol hull of the stroke
that passes through the target point rather than the stroke itself. The
errors thus introduced are small as long as the control hull fits the
stroke closely and the direction field does not change too fast.

To map the control hull into the direction field, we first pin a ran-
dom control pointPi of the stroke onto the target locationX in the

4If the initial difference is zero (i.e., if the target tone is white), the im-
portance is set to zero.

5The storage values 0 to 255 correspond to importance values of�0. 14
to 1.0. This range is a compromise between providing enough resolution in
the positive values to distinguish differences in importance, and allowing
negative values so that slightly overdarkened areas can be accommodated.



Figure 6 A visualization of four quantities from a symmetric tensor
field. The integral curves of the principle-direction field are shown
by strokes; the density of the strokes in each direction is related to
the magnitude of the principle value associated with that direction.

illustration. To find the location ofPi+1, we need to map the points
along the segmentPiPi+1 to locationsi(s) in the illustration, for
0 � s� 1. To definei , let �i denote the angle between the vector
vi = Pi+1�Pi and the vertical; for eachs, we want the angle between
the tangent0i (s) and the direction field ati(s), calledd(i(s)), to
be �i as well. In addition, we want the arclength ofi(s) between
s = 0 ands = 1 to be the length ofvi . In summary, we want

i(0) = X

angle(0i (s), d(i(s))) = �i

k 0i (s) k = k vi k

We solve this set of differential equations numerically, using Euler
integration, and recordi(1) as the place to mapPi+1. We repeat
this process to place the remaining points of the hull. Because our
strokes have many control points, this approach effectively warps
the stroke so that at every point its angle to the direction field in the
illustration is very similar to its angle to the vertical in the stroke
example set.

Clipping. Pen-and-ink artists have various rules for clipping
strokes. One widely-accepted convention is that strokes do not cross
object boundaries or boundaries between semantically different
portions of objects, such as the edges of hard shadows [15]. We ad-
here to this convention by clipping strokes when they reach places
where the direction field turns rapidly.6 Strokes are also clipped
when continuing to draw them would over-darken some region of
the image. If a stroke is sufficiently short and has been clipped for
this latter reason, it is removed altogether—pen-and-ink artists do
not generally use short strokes to fill in every little bit of a dark
area—and the importance value there is set to “below threshold” so
that no further strokes will be draw into that area.

After the stroke is followed as far as possible in each direction from
the pinned location, it is added to the illustration, and the difference
and importance images are updated.

3.2 Updating the difference image

To quickly update the difference image with each added stroke, we
sacrifice accuracy for efficiency through two approximations that
seem to work well in practice.

The first approximation is that instead of blurring the current il-
lustration after adding each stroke and subtracting the result from
the tone image, we subtract a blurred version of the stroke from

6Some automated assistance in detecting object boundaries would be
valuable. We also intend to let the user draw into an “outline image,” which
would be used for both drawing outlines and truncating hatching strokes.

Figure 7 Hair and face (after untitled photograph by Ralph Gibson [3].)

the difference image. This assumption amounts to presuming that
the blurred version of multiple strokes will be the same as the sum
of blurred versions of the individual strokes, which is fine when
strokes do not overlap; when they do, we lighten the blurred ver-
sion of the stroke as described below.

The second approximation is in our computation of the filtered im-
age of a stroke. Instead of rendering the stroke itself, we render
its control hull as a wide blurry line. The widthw is computed
as 2h=t mm, whereh is the stroke thickness (in mm) andt is the
desired tone value between 0.0 (white) and 1.0 (black), and then
clamped to the range 1–10 mm. We use Gupta-Sproull antialiased
line drawing [4], but we supply the algorithm with a modified
“darkness look-up table,” whose width is as specified above, and
whose height is twice the reciprocal of the width.7 If the strokes
are drawn with even spacingw, a nearly-constant blurred tone of
average valuet results. In our Gupta-Sproull computation, we treat
neither the endpoints nor major-axis-direction changes as excep-
tional cases. In practice, these simplifications seem to have had no
discernible effect.

Overlapping strokes and darkness adjustment.For light areas in
the final illustration, strokes rarely overlap, whereas in dark areas
they will often overlap. If each stroke in a dark region is counted
as contributing as much darkness as a comparable stroke in a
light area, the dark-area strokes will be overcounted: points where
strokes cross will count as having been darkened twice or more. We
therefore compute alightening factor, which is a function of tone
and the stroke example set. These lightening factors are computed
in a preprocessing step: we draw many strokes into a buffer and
record the buffer’s darkness after each stroke. When we finish, we
will know that, for instance, in an area of 50% grey, only 90% of
the pixels drawn end up being visible; the rest overlap with other
black pixels. In that case, when filling a region with a target tone
of 50% grey, we would reduce the darkness of the filtered strokes
to 90% before adding them to the blurred image, assuming that on
average only 90% of their area does not overlap with other strokes
in that region and will therefore actually contribute darkness to the
illustration.

This approximation is not only faster than drawing-then-blurring,
it also allows us to render a new stroke directly into the difference
image without using a separate buffer. The lightening factor de-
scribed above is incorporated into the “darkness look-up table” so
that each stroke is drawn by looking at the underlying target tones.
These tones determine which portion of the darkness look-up table

7For width w, heighth and distance from stroke centerx, the look-up

value is (0.884/h)e�2.3(x=w)2 , which is simply a bump function that tapers to
nearly zero.



(a) (b) (c)

Figure 8 A teapot at three different scales (after illustration by Arthur Guptill [5].)

to use, and the values found there are directly incorporated into the
difference image.

3.3 Output enhancements

The strokes to be drawn are deposited in a PostScript file, along
with an interpreter that converts B-splines into drawable PostScript
Bézier segments. We can also add two “stroke character” enhance-
ments to the B-splines before printing (see the stroke detail inset of
Figure 9).

The first enhancement is to render strokes with variable width.8

Each stroke has three widths associated with it—one at each end
and one in the middle. These widths are adjustable on a per-layer
basis from the editing interface, and impart subtle expressive ef-
fects. Tapering the ends of strokes is ideal for rendering hair, but
inappropriate for rendering hard shadows, for example.

The second enhancement is the addition of small “wiggles” to
strokes more than 5mm long, to simulate a hand-drawn appear-
ance. This effect is achieved by first resampling the control hull
(except for the endpoints, which we copy), placing points with ran-
dom spacing of about 4mm�1mm. We then randomly perturb each
interior control point slightly along the angle bisector of its two ad-
jacent sides, and perturb the two end control points both along and
orthogonal to the control hull segments that they terminate. In the
current system, the perturbations are uniformly distributed between
�0.15mm and 0.15mm.

4 Results

The pen-and-ink illustration system was written in two linked parts:
the user interface was written in C++, and the rendering engine was
written in Modula-3. The interface runs at interactive speed, and the
pen-and-ink renderer takes a few minutes to render the illustrations
presented here (see Table 1).

We have produced several illustrations to test the capabilities of our
system. Figures 5 and 8 are attempts to closely follow examples
of real pen-and-ink drawings from illustration texts. Figure 8 also
shows that our system can rescale illustrations while maintaining
the character of their texture.

8The adjustments that are made are ignored in the computation of
darkness—they are to be thought of as merely embellishments.

Fig Content % Reduction # Strokes Time (sec)
5 Books 58 16722 258
6 Vectors 35 665 25
7 Hair/Face 79 37618 788
8a Teapot small 65 2924 50
8b Teapot 65 8361 77
8c Teapot closeup 65 13617 200
9 Raccoon 62 55893 960

Table 1 Illustration statistics and rendering timings measured on a
Silicon Graphics workstation with a 180MHz R5000 processor.

Figure 6 shows a way of visualizing measured or computed vector
fields using our system. It was created by bypassing the interac-
tive stage of the system and feeding directions and tones directly
into the renderer. Figures 7 and 9 show our ability to render non-
smooth, difficult-to-model surfaces such as hair and fur. Our stroke
lengths are approximately 1–10cm in the original PostScript ren-
dering. This scale is similar to that at which pen-and-ink artists typ-
ically work. These artists often reduce their work for final presen-
tation to achieve a finer, more delicate feel. We have done the same
with our illustrations; the reductions are reported in Table 1.

5 Future work

Our current system suggests two principle areas for future research.

Interactive illustrations.Currently the user interacts with the com-
ponents of the underlying representation of the illustration. It would
be nice for the user to have the option of interacting instead with
the pen-and-ink illustration itself. Modifications to the illustration
would be immediately reflected by corresponding changes in the
tone or direction. While previous interactive systems [13] have al-
lowed the user to directly manipulate the illustration, they do not—
as does our system—allow the user to specify abstract high-level
attributes of the illustration, and thus are not required to make a
large number of changes as the result of a simple user action. With
our system, changing the directions underneath the cursor can eas-
ily require removing and reapplying hundreds of strokes. Much of
the incremental update mechanism needed for such behavior is al-
ready supported by our system, but we currently would require a
considerable increase in rendering speed to make such an interface
responsive enough to be usable.



Figure 9 Raccoon with detail inset showing stroke character.

Coherent textures.Many pen-and-ink drawings make use of tex-
tures such as bricks or shingles or fabrics that require strokes to
appear in locally coherent patterns. Many artists also draw small
groups of parallel hatches together in coherent clusters when fill-
ing in large areas of tone. We would like to support these kinds
of coherent textures in our illustrations. The biggest difficulty is in
dealing with diverging direction fields, since it is not obvious how
to maintain local coherence and scale while following such a field
without tearing the texture at some point.

Acknowledgments

This work was supported by an Alfred P. Sloan Research Fellow-
ship (BR-3495), an NSF Presidential Faculty Fellow award (CCR-
9553199), an ONR Young Investigator award (N00014-95-1-0728)
and Augmentation award (N00014-90-J-P00002), and an industrial
gift from Microsoft.

References

[1] Debra Dooley and Michael Cohen. Automatic illustration of 3D ge-
ometric models: Lines. InComputer Graphics (1990 Symposium on
Interactive 3D Graphics), pp. 77–82, March 1990.

[2] Gershon Elber. Line art rendering via a coverage of isoparametric
curves.IEEE Transactions on Visualization and Computer Graphics,
1(3):231–239, September 1995.

[3] Ralph Gibson.Tropism: photographs. Aperture, New York, 1987.

[4] S. Gupta and R. F. Sproull. Filtering edges for gray-scale displays.
Computer Graphics (SIGGRAPH ’81 Proceedings), 15(3):1–5, Au-
gust 1981.

[5] Arthur L. Guptill. Rendering in Pen and Ink. Watson-Guptill Publica-
tions, New York, 1976.

[6] Paul Haeberli. Paint by numbers: Abstract image representations.
Computer Graphics, 24(4):207–214, August 1990.

[7] John Lansdown and Simon Schofield. Expressive rendering: A re-
view of nonphotorealistic techniques.IEEE Computer Graphics and
Applications, 15(3):29–37, May 1995.

[8] Frank Lohan. Pen and Ink Techniques. Contemporary Books, Inc.,
Chicago, 1978.

[9] Barbara J. Meier. Painterly rendering for animation. In Holly Rush-
meier, editor,SIGGRAPH 96 Conference Proceedings, pp. 477–484.
Addison Wesley, August 1996.

[10] Yachin Pnueli and Alfred M. Bruckstein.Digi
Dürer — a digital en-

graving system.The Visual Computer, 10(5):277–292, 1994.

[11] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering
of 3-D shapes.Computer Graphics, 24(4):197–206, August 1990.

[12] Takafumi Saito and Tokiichiro Takahashi. NC machining with G-
buffer method.Computer Graphics, 25(4):207–216, July 1991.

[13] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David H.
Salesin. Interactive pen-and-ink illustration. In Andrew Glassner, ed-
itor, Proceedings of SIGGRAPH ’94, pp. 101–108. ACM Press, July
1994.

[14] Mike Salisbury, Corin Anderson, Dani Lischinski, and David H.
Salesin. Scale-dependent reproduction of pen-and-ink illustrations.
In Holly Rushmeier, editor,SIGGRAPH 96 Conference Proceedings,
pp. 461–468. Addison Wesley, August 1996.

[15] Gary Simmons.The Technical Pen. Watson-Guptill Publications, New
York, 1992.

[16] Thomas Strothotte, Bernhard Preim, Andreas Raab, Jutta Schumann,
and David R. Forsey. How to render frames and influence people.
Computer Graphics Forum, 13(3):455–466, 1994. Eurographics ’94
Conference issue.

[17] Georges Winkenbach and David H. Salesin. Computer-generated pen-
and-ink illustration. In Andrew Glassner, editor,Proceedings of SIG-
GRAPH ’94, pp. 91–100. ACM Press, July 1994.

[18] Georges Winkenbach and David H. Salesin. Rendering free-form sur-
faces in pen and ink. In Holly Rushmeier, editor,SIGGRAPH 96 Con-
ference Proceedings, pp. 469–476. Addison Wesley, August 1996.


