TABLE DES MATIÈRES

No	otatio	ns		5	
In	trodu	ction		7	
	Contexte				
	Moti	vations		8	
	Sim	ilation	multirésolution	9	
	Obie	ctifs de	cette thèse	9	
	Orga	inisatio	n du document	10	
1	Trav	yanx an	térieurs	11	
-	1	Défor	mations géométriques de la surface	11	
	•	1.1	Surfaces de forme libre	11	
		1.2	Les déformations de l'espace	12	
		1.3	Surfaces implicites	12	
		1.4	Conclusion	13	
	2	Défor	mations globales	13	
		2.1	Dynamique modale	13	
		2.2	Déformation globale dynamique	14	
		2.3	Conclusion	14	
	3	Les m	odèles masses-ressorts	14	
		3.1	Principe	14	
		3.2	Raffinements du modèle	15	
		3.3	Conclusion	15	
	4	Les sy	stèmes de particules	16	
		4.1	Principe	16	
		4.2	Conclusion	17	
	5	Le mo	dèle SPH	17	
		5.1	Passage du continu au discret	17	
		5.2	L'équation d'état du matériau	18	
		5.3	Simulation multirésolution des SPH	18	
		5.4	Conclusion	19	
	6	Les m	odèles continus	19	
		6.1	Minimisation de l'énergie de déformation	19	
		6.2	Conclusion	20	
	7	Les él	éments finis	20	
		7.1	Principe	20	

	7.2	Applications	22
	7.3	Conclusion	24
8	Modèl	es à couches	25
	8.1	Principe	25
	8.2	Conclusion	25
9	Applic	ations interactives	26
10	La mu	ltirésolution en animation	27
	10.1	Plusieurs facons de faire de la multirésolution	27
	10.2	Difficultés	27
	10.3	Adaptatif <i>versus</i> Hiérarchique	28
	10.5	Utilisations de la multirésolution	28
11	Choix	d'un modèle	20
11	11.1	Méthodes interactives	29
	11.1	Le temps réel vrai	29
	11.2	Nécessité de le multirécolution	29
	11.5	Modèle indépendent de la résolution	30
12	Conch		30
12	Concit		51
2 No	tions d'é	lasticité linéaire	33
1	Le ten	seur des déformations	34
1	1 1	Le tenseur de Cauchy	3/
	1.1	Le tenseur de Green Lagrange	35
	1.2	Comparaison des deux modèles	36
2	Lo ton		30
2		Définition	20
	2.1		39 20
2			39 40
3	La 101		40
	5.1 2.2		40
	5.2 2.2		40
	3.3 2.4		41
4	5.4 Ett		42
4	Frotter		42
	4.1		42
	4.2		42
_	4.3	La loi de comportement	43
5	Conclu	1\$10n	43
3 Pro	mier mo	dèle multirésolution	45
1	Calcul	du Janlacien	ч 5 Лб
1	1 1	Dérivée seconde scalaire	40 46
	1.1	Derivee seconde	46
	1.2	Lanlagian d'un champ vactorial	40
2	T.J Evtono	ion an gred (div)	47
2		$\begin{array}{c} \text{Draination la long de l'ave} \end{array}$	47
2	Z.1 Simula	Projection le long de l'axe	40
3	Simula		48
	3.1 2.2		48
4	3.2 Sin 1	Ajout de forces dissipatives	49
4	Simula		50
	4.1		50
	4.2	Definition des volsines	51
	4.3		52
	4.4	Position relative mère-fille	53
	4.5	Changement de résolution	54
_	4.6	Mise à jour de la structure	55
5	Multir	ésolution temporelle	55
	5.1	Critère de Courant	55
	5.2	Synchronisation et mise en œuvre	56

		5.3 Critère de stabilité d'intégration	6
	6	Résultats	6
		6.1 Premiers essais	6
		6.2 Cas d'école	7
		6.3 Une application temps-réel	7
	7	Discussion	8
		7.1 Indépendance de la résolution	8
		7.2 Une méthode hiérarchique	9
		7.3 Problème avec le grad(div)	0
	8	Conclusion	1
4	Nou	veaux opérateurs différentiels 6.	3
	1	Le théorème de Gauss	3
		1.1Expression mathématique631.11.1	3
		1.2 Définition du volume 64	4
		1.3 Champ linéaire par morceaux 64	4
	2	Calcul du laplacien	5
		2.1 Principe	5
		2.2 Expression en 2D	5
		2.3 Intégrale sur tout le contour	б
		2.4 Mise en œuvre	7
		2.5 Interprétation	7
		2.6 Qualité de l'opérateur	8
	3	Calcul du grad(div u)	9
		3.1 Principe	9
		3.2 Calcul du gradient	9
		3.3 Calcul de la divergence	0
		3.4 Intégrale sur tout le contour	0
		3.5 Mise en œuvre	1
		3.6 Interprétation	1
		3.7 Qualité de l'opérateur	2
	4	Extension à trois dimensions	3
	•	41 Expression des opérateurs 77	3
		42 Expression de la force 74	4
		43 Mauvaise définition de la région de Voronoï	5
		4.4 Création des régions de Voronoï 74	5
	5	Comparaison avec les éléments finis	7
	5	51 Éléments finis explicites	, 7
		5.1 Elements mills explicites	2 2
		5.2 Comparaison an 2D 70	0
		5.5 Comparaison en 3D	2 0
	6	Création d'un modèle hybride	ט ר
	0	6.1 Inspiration	ະ າ
		$6.1 \qquad \text{inspiration} \qquad . \dots \dots$	2 ว
	7	Comparaison des différentes formulations	2
	/	7.1 Protocolo do test	2 2
		7.1 Protocole de test 8. 7.2 Les différente modèles commenée 8.	Э 1
		7.2 Les différents modèles comparés	+ ∡
	0	7.5 Resultats	4
	0		J
5	Mod	èle multirésolution hiérarchique 9	1
	1	Idée générale	1
	2	Cohabitation de différents maillages	2
		2.1 Création des maillages	2
		2.2 Interface entre deux maillages	2
		2.3 Les points fantômes	3
	3	Adaptation de la simulation	4

		3.1 3.2 3.3	Structure de données hiérarchique	94 95 96
	4	Raffine	ments du modèle	96
		4.1	Utilisation d'un octree non restreint	96
		4.2	Mise à jour des points fantômes	97
		4.3	Intégration temporelle	97
	5	Simula	tion temps-réel	99
		5.1	Parallélisation	99
		5.2	Temps-réel vrai	100
	6	Résulta	its	100
	7	Conclu	sion	101
	T 4	e	19411 4	103
6	Inter	rface av	ec l'utilisateur	103
	1	Afficha		103
	•			103
	2	Collisi		105
		2.1	Detection de la collision	105
		2.2		106
	3	Retour	d'effort	107
		3.1	Principe	107
		3.2	Lissage de la force	107
	4	Conclu	sion	108
Co	nclus	ion		111
CU	Résu	mé des	contributions	111
	Trava	aux futu	rs	112
	Pour	conclur	е	114
	1 0 00	• • • • • • • • • • • • •		
Α	Rap	pels sur	les opérateurs différentiels	117
	1	Dérivé	es par rapport au temps	117
		1.1	Opérateurs du premier ordre	117
		1.2	Opérateurs du second ordre	117
	2	Dérivé	es par rapport à l'espace	117
		2.1	Opérateurs du premier ordre	117
		2.2	Opérateur Nabla	118
		2.3	Opérateurs du second ordre	118
р	Tag	máthad	a dintéruation	110
D		Diffor	es u micgration	110
	1	Difficu	nes	119
	2	Depend		119
	3	Integra		120
	4	Integra		121
С	Gree	en-Lagr	ange en pratique	123
	1	Rappel	s d'élasticité	123
	2	Forces	dissinatives	124
	3	Élémer	the finis explicites	124
T				105
Ta	Table des matieres			
Ta	ble de	es figure	25	131
Bil	oliogr	aphie		135

TABLE DES FIGURES

1	Équipement d'une salle de simulation laparoscopique ©Épidaure - INRIA	8
1.1	Quatre points de contrôle, la spline d'interpolation qui passe par eux (à l'extérieur) ainsi que la courbe de Bézier qu'ils définissent, tangentes au départ et à l'arrivée au polygone de contrôle	
	(à l'intérieur).	12
1.2	Déformation de l'espace illustrée sur un modèle de girafe : la grille originale (a) et celle obtenue	
	après une déformation localisée (b).	12
1.3	Discrétisation d'un objet 2D à l'aide de masses-ressorts.	14
1.4 1.5	Intensité de la force résultant d'un potentiel de Lennard-Jones en fonction de la distance Chaque particule peut se diviser en plusieurs autres (a). Le regroupement est possible lorsque	16
	la forme est globalement sphérique (b).	18
1.6	Les fonctions de base ont une forme triangulaire en 1D (seules celles associées aux sommets encadrés sont représentées) (a). Leur somme pondérée crée la fonction linéaire par morceaux	
	qui approxime la fonction continue (b).	21
1.7	Simulation de laparoscopie hépatique utilisant les masses-tenseurs.	24
1.8	Une juxtaposition de maillons imbriqués forme le <i>ChainMail</i> .	27
1.9	Parmi toutes les résolutions possibles, l'adaptatif (a) ne simule que le niveau le plus fin (points)	
	alors qu'en hiérarchique (b), les niveaux inférieurs continuent à être actifs et cohabitent avec le	
	niveau fin	28
2.1	Un champ de déplacement dans un cube en 3D, représenté en chaque point par un vecteur.	34
2.2	Le cube dans sa position de repos. Vues de face et de profil des points qui vont être simulés.	37
2.5	utilisant Cauchy (a) et Green-Lagrange (b)	37
2.4	Images de l'animation d'un cube sous l'action de la gravité avec le tenseur de Cauchy	38
2.5	Images de l'animation d'un cube sous l'action de la gravité avec le tenseur de Green-Lagrange.	38
2.6	Décomposition de la force agissant sur un élément de surface dS défini par sa normale n	39
2.7	Type de comportement d'un matériau au delà des hypothèses de linéarité.	40
2.8	Évolution de λ et μ lorsque v varie entre 0 et 0.5, pour un <i>E</i> donné. Noter que λ tend vers l'infini	
	pour des matériaux incompressibles ($\nu = 0.5$)	41
3.1	Le champ de déplacement peut être séparé en deux composantes : la radiale, créée par les forces	
	de pression, et la rotationnelle, créée par les forces de cisaillement.	47
3.2	${f y}$ s'écrit comme la somme de deux vecteurs orthogonaux en fonction du vecteur unitaire ${f x}$	48
3.3	L'altitude de l'un des coins du cube (indiqué par une flèche) lors de la simulation, pour diffé-	
<u> </u>	rents maillages réguliers. Aucun frottement n'a été ajouté dans cette simulation	49
$\prec \Lambda$	L'in même cube sera échantillonné nar huit narticules tilles ou nar leur mère	- 50

3.5	Création récursive des maillages. La grille régulière qui sert à créer le maillage le plus fin (a). On regroupe ensuite les particules pour créer les maillages suivants (b), (c) et (d). Les tailles représentent la masse des particules.	51
3.6	Durant la simulation, les voisins d'une particule ne peuvent appartenir qu'au même niveau de résolution, au niveau supérieur ou au niveau inférieur.	51
3.7	Les 56 voisines de niveau inférieur (a), les 26 voisines de même niveau (b) et les 7 voisines de niveau supériour (et les "sourse") (a) d'une particule donnée	50
3.8	Le système de coordonnées locales (flèches), défini par les voisines de la mère assure un bon placement des filles, même lorsque l'objet est déformé.	52
3.9	Un parallélépipède déformé par un outil. Les résolutions comportent entre 24 et 1056 particules	57
3.10	Une tige oscillant sous la gravité. Simulation de référence faite avec 256 particules (a). Images	57
3.11	de la simulation adaptative (b)	57
3.12	la surface auxquels elles sont reliées (b). La flèche représente la force renvoyée à l'utilisateur Bien que les contraintes imposées dépassent parfois le formalisme des petites déformations, notre modèle présente néanmoins une rénonse d'une honne qualité visuelle à l'utilisateur	58
3 13	L'ajout de textures augmente sensiblement le réalisme du simulateur	58
5.15	inférieurs continuent à être actifs et cohabitent.	59
4.1	Le point <i>i</i> représentera les valeurs du champ à l'intérieur de sa région de Voronoï On décompose l'intégrale sur le contour en le somme des intégrales sur les demi arôtes <i>m</i> est	64
4.2	On decompose 1 integrate sur le contour en la somme des integrates sur les denn-aletes. <i>m</i> est l'orthogontre du triangle, i' at k' les milioux des arôtes	65
13	On utilise les angles α , β et α pour obtenir une expression en fonction de \hat{k}	66
4.5 4.4	Les cota des angles opposés à l'arête viennent pondérer la contribution d'un voisin	66
4.5	Représentation des iso-valeurs du coefficient pondérateur d'un point <i>j</i> sur le laplacien calculé en <i>i</i> en fonction de la position de <i>i</i>	68
16	Le gradient de la fonction de base d'un sommet est dirigé selon la normale à l'arête opposée	70
4.7	Le gradient de la tonetion de base d'un sommet est dirigé scion la normale à l'arcte opposee Le point <i>i</i> va se déplacer pour compenser au mieux la variation d'aire due aux déplacements de ses voisins	70
4.8	Le milieu de la hauteur <i>ih</i> (carré) et celui de l'arête (j',k') (cercle) ne coïncident que dans le cas où le triangle est isocèle en <i>i</i>	73
4.9	La surface de Voronoï intersecte chaque tétraèdre T en formant 3 polygones orthogonaux aux arêtes. Ils passent par les milieux des arêtes, les orthocentres des faces et l'orthocentre du	15
	tétraèdre. On a ici supprimé la face avant du tétraèdre pour montrer les polygones intérieurs.	74
4.10	La région de Voronoï peut se trouver à l'extérieur du triangle si l'angle dépasse 90 °	75
4.11 4.12	Les tétraèdres composant l'objet (a) et la région de Voronoï associée au point central (b) Les arêtes extérieures sont coupées aux limites de l'objet en plusieurs étapes : région de Voronoï complète pour un des commets du bord (a) suppression des facettes axternes (b) et projection	75
	sur la surface (c)	76
4.13	Des exemples de régions de Voronoï obtenus sur différents maillages	76
4.14	La région associée au point central d'un cube composé de 9 (a) (comparer avec la Figure 4.11b) et 57 (b) points régulièrement répartis	70
4.15	La différence de calcul de l'opérateur grad div entre les deux méthodes tient au calcul pondéré d'une normale à la <i>face</i> du tétraèdre pour les éléments finis (a) qui est remplacé dans notre	,,
	approche par la somme pondérée des trois normales des facettes de Voronoï (b)	82
4.16	Les positions extrêmes atteintes par un cube soumis à l'action de la gravité en utilisant les éléments finis explicites et le tenseur de Cauchy (a) et la version hybride que nous proposons par analogie avec les résultats de la méthode de Voronoï (b). La première ligne montre le vecteur	
4 17	déplacement de chaque point	83
/	(b) et le niveau 2, 135 (c).	84
4.18	Simulation avec le tenseur de Cauchy.	84
4.19	Tenseur de Cauchy, sur 15 secondes de simulation. La position en x.v et z du coin du cube fait	5.
	apparaître un mouvement régulier.	85

4.20 4.21	Simulation avec la méthode basée sur les régions de Voronoï et le théorème de Gauss Les forces créées par l'opérateur grad (div u) sont bien celles que l'on attend d'un opérateur assurant une préservation de volume	85 86
4.22	On constate une lente divergence de la simulation utilisant l'opérateur grad (div u) issu de la méthodo de Voronoï	86
4.23 4.24	Simulation avec des masses-ressorts. La raideur est proportionnelle à la longueur à vide du	80 87
4.25	ressort	87
4.26	des raideurs de respectivement 20, 13 et 6 pour les résolutions 0, 1 et 2	87 88
4.27 4.28	La version hybride du tenseur de Cauchy (le laplacien est calculé à l'aide d'un simple scalaire). L'introduction de frottements internes n'altère pas le comportement multirésolution de l'opé-	88
4.29 4.30	rateur hybride. Simulation avec le tenseur de Green-Lagrange. Simulation avec le tenseur de Green-Lagrange. Simulation avec le tenseur de Green-Lagrange. Tenseur de Green-Lagrange avec ajout de forces dissipatives internes. Simulation avec le tenseur de Green-Lagrange.	89 89 90
5.1	Le maillage triangulaire original (34700 triangles) est dégradé à différents degrés (ici 550, 130 et 30 triangles), puis maillé volumiquement (1874, 172 et 28 tétraèdres, ligne du bas).	93
5.2	Le voisin F de P est fantôme et sert à P à savoir ce qui se passe à sa droite. Il interpole son déplacement d'après celui des points Q_i du maillage fin	94
5.3	Liaison des maillages (en 2D) : en fonction des maillages effectivement simulés, le sommet C_1 pourra calculer sa position à partir de celles des points (F_1, F_2, F_3) du maillage fin. Les déformations pourront aussi être propagées aux noeuds du maillage fin : F_1 pourra déduire sa position de celle des points (C_1, C_2, C_3) de son triangle parent	05
5.4	Les fils d'un point sont les sommets du maillage fin situés dans sa zone de Voronoï. Ce sont eux qui remplaceront le point lorsqu'il se subdivisera. On stockera également la liste des premiers))
	voisins de ces fils.	95
5.5 5.6	Un des points (F) du tétraédre fils de P ne fait pas directement partie des fils de P La synchronisation décalée des simulations des différents pas de temps permet d'éviter les goulots d'étranglement en répartissant la charge sur toute la simulation	97 98
5.7	Le programme principal et le processus chargé de l'animation sont liés par un système de sémaphores assurant leur synchronisation.	100
5.8	Influence de l'augmentation de λ sur la préservation de volume. Les images représentent $\lambda = 0$ (a), $\lambda = 50000$ (b) et $\lambda = 500000$ (c)	100
5.10	discrétisation intuitive des zones proches de l'outil.	101
5.10	répercutent sur ses bras qui oscillent légèrement.	101
6.1	Un nœud de la surface est lié à une particule du modèle interne grâce à un décalage o	104
6.2 6.3	Un nœud de la surface est lié aux différents triangles surfaciques des maillages tétraédriques Une caméra placée à l'intérieur de l'outil (a) permet de détecter rapidement les collisions avec	105
6.4	l'objet, que l'on considère l'outil comme statique (b) ou dynamique (c) Pour chacun des triangles intersectés, on calcule le centre de gravité <i>B</i> de la zone d'intersection. Les trois sommets du triangle seront déplacés en fonction des coefficients barycentriques de ce	106
	point	106
6.5 6.6	Le Phantom desktop	107
6.7	D'autres exemples d'animation, aux comportements plus ou moins rigides en fonction des pa-	108
6.8	Le rendu final utilise des textures d'environnement qui explicitent la déformation subie (a). Le maillage interne correspondant (b).	109
	······································	- 57