
~ Computer Graphics, Volume 21, Number 4, July 1987

Fast Ray Tracing by Ray Classification

James Arvo
David Kirk

A p o l l o C o m p u t e r , I n c .
3 3 0 B i l l e r i c a R o a d

C h e l m s f o r d , M A 0 1 8 2 4

A b s t r a c t

We describe a new approach to ray tracing which
drastically reduces the number of ray-object and
ray-bounds intersection calculations by means of
5-dimensional space subdivision. Collections of rays
originating from a common 3D rectangular volume and
directed through a 2D solid angle are represented as
hypercubes in 5-space. A 5D volume bounding the space
of rays is dynamically subdivided into hypercubes, each
linked to a set of objects which are candidates for
intersection. Rays are classified into unique hypercubes
and checked for intersection with the associated candidate
object set. We compare several techniques for object
extent testing, including boxes, spheres, plane-sets, and
convex polyhedra. In addition, we examine optirnizations
made possible by the directional nature of the algorithm,
such as sorting, caching and backface culling. Results
indicate that this algorithm significantly outperforms
previous ray tracing techniques, especially for complex
environments.

CR Categories and Subject Descriptors:
1.3.3 [Computer Graphics] : Picture/Image Generation;
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism;

General Terms: Algorithms, Graphics

Additional Key Words and Phrases: Computer graphics,
ray tracing, visible-surface algorithms, extent, bounding
volume, hierarchy, traversal

1. I n t r o d u c t i o n

Our goal in studying algorithms which accelerate ray
tracing is to produce high-quality images without paying
the enormous time penalty traditionally associated with
this method. Recent algorithms have focused on reducing

Permission to copy without foe all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to repuNish, requires a fee and/or specific permission.

© 1987 ACM-O-89791-227-6/87/007/0055 $00.75

the number of ray-object intersection tests performed
since this is typically where most of the time is spent,
especially for complex environments. This is achieved by
using a simple-to-evaluate function to cull objects which
are clearly not in the path of the ray.

1.1 P r e v i o u s W o r k

Rubin and Whitted [14] developed one of the first
schemes for improving ray tracing performance. They
observed that "exhaustive search" could be greatly
improved upon by checking for intersection with simple
bounding volumes around each object before performing
more complicated ray-object intersection checks. By
creating a hierarchy of bounding volumes, Rubin and
Whirred were able to reduce the number of bounding
volume intersection checks as well. Weghorst, et. al. [17]
studied the use of different types of bounding volumes in
a hierarchy, and discussed how ease of intersection
testing and "tightness" of fit determine the bounding
volume's effectiveness in culling objects.

The object hierarchy of Rubin and Whitted made the
crucial step away from the linear time complexity of
exhaustive search but still did not achieve acceptable
performance on complex environments. This was due in
part to the top down search of the object hierarchy
required for every ray. Another factor was the difficulty
of obtaining a small bound on the number of ray-object
intersection tests and ray-bounds comparisons required
per ray since this depended strongly on the organization
of the hierarchy.

Another class of algorithms employs 3D space
subdivision to implement culling functions. The initial
candidates for intersection are associated with a 3D
volume containing the ray origin. Successive candidates
are identified by regions which the ray intersects.
Concurrently and independently, Glassner [4], and
Fujimoto, et. al. [3] pursued this approach. Glassner
investigated partitioning the object space using an octree
data structure, while Fujimoto compared octrees to a
rectangular linear grid of 3D voxels. Kaplan [7] proposed
a similar scheme and observed that a binary space
partitioning tree could be used to accomplish the space
subdivision. A drawback common to all of these
approaches is that a ray which misses everything must be
checked against the contents of each of the regions or
voxels which it intersects.

55

~ Z ~ SIGGRAPH '87, Anaheim, July 27-31, 1987

None of these algorithms made use of the coherence
which exists between similar rays. Speer, et. al. [15]
examined the concept of "tunnels" as a means of
exploiting ray-tree coherence. Speer attempted to
construct cylindrical "safety regions" within which a ray
would miss all objects, but observed that despite
considerable coherence, the cost of constructing and using
the cylindrical tunnels negated the benefit of the culling
they accomplished.

Kay and Kajiya [8] introduced a new type of bounding
volume, plane-sets, and a hierarchy traversal algorithm
which is able to check objects for intersection in a
particular order, regardless of the locality of the bounding
volume hierarchy. This algorithm had the key advantage
over previous object hierarchy schemes that objects could
be checked for intersection in approximately the order
that they would be encountered along the ray length.

1 .2 A N e w A p p r o a c h

Our ray classification approach differs significantly
from previous work in that it extends the idea of space
subdivision to include ray direction. The result is an
extremely powerful culling function that is, empirically,
relatively insensitive to environment complexity.

A key feature of the algorithm is that a single
evaluation of its culling function is capable of producing a
small but complete set of candidate objects, even if the
ray misses everything. This is accomplished by adaptively
subdividing the space of all relevant rays into equivalence
classes, El , E2, ..., Era, and constructing candidate
object sets C1, C2, ..., Cm, such that Ci contains all
objects which the rays in Ei can intersect. Evaluating the
culling function reduces to classifying a given ray as a
member of an equivalence class and retrieving the
associated candidate set. The algorithm strives to keep
J Ci I small for all i, and several new techniques are
employed which lessen the impact of those sets for which
it fails to do so.

2. 5-Space and Ray Classification

In many ray tracing implementations, rays are
represented by a 3D origin coupled with a 3D unit
direction vector, a convenient form for intersection
calculations. However, geometrically a ray has only five
degrees of freedom, as evidenced by the fact that the
same information can be conveyed by only five values: for
instance, a 3D origin and two spherical angles.
Consequently, we can identify rays in 3-space with points
in 5-space, or, more precisely, with points in the
5-manifold R3xS2, where $2 is the unit sphere in R3. It
follows that any neighborhood of rays, a collection of rays
with similar origins and directions, can be parametrized
by a subset of R5. We shall use such parametrizations in
constructing a culling function which makes use of all five
degrees of freedom of a ray.

The ray classification algorithm can be broken into
five subtasks. All but the last operate at least partly in
5-space. These are:

[] 5D Bounding Volume:
Find a bounded subset, E c R5, which contains the
5D equivalent of every ray which can interact with the
environment.

[]

[]

[]

[]

5D Space Subdivision:
Select subsets El , ..., Emwhich partition E c R5 into
disjoint volumes.

Candidate Set Creation:
Given a set of rays represented by a 5D volume Ei ,
create a set of candidates, Ci , containing every object
which is intersected by one of the rays.

Ray Classification:
Given a ray corresponding to a point in E, find a set,
El , of a partitioning, E1 , Em, which contains the
point, and return the associated candidate set Ci .

Candidate Set Processing:
Given a ray and a set of candidate objects, Ci ,
determine the closest ray-object intersection if one
exists.

For each ray that is intersected with the environment,
[] is used to retrieve a set of candidate objects and []
does the actual ray-object intersections using this set. As
we shall see, [] is carried out only once while [] and []
incrementally refine the partitioning and candidate sets in
response to ray classification queries in [] . Ideally we
seek a partitioning in [] such that corresponding
candidate sets created in [] contain fewer than some
predetermined number of objects. These subtasks are
described in detail in sections 3 through 7.

2.1 Beams as 5D Hypercubes

Because much of the algorithm involves 5D volumes
it is important to choose volumes which have compact
representations and permit efficient point-containment
queries and subdivision. For these reasons we use 5D
axis-aligned parallelepipeds, or hypercubes. These are
stored as five ordered pairs representing intervals along
the five mutually orthogonal coordinate axes which we
label X, Y, Z, U, and V.

Each hypercube, representing a collection of rays, has
a natural 3D manifestation which we call a beam. This is
the unbounded 3D volume formed by the union of
semi-infinite lines, or rays in the geometrical sense,
defined by the points of the hypercube. Beams play a
central role in candidate set creation since they comprise
exactly those points in 3-space which are reachable by a
set of rays. Given the importance of this role it is
essential that hypercubes define beam volumes which are
easily represented, such as convex polyhedra. This
geometry is completely determined by the way we identify
rays with 5D points.

2.2 Rays as 5D Points

In this section we describe the means of associating a
unique point in R5 with each distinct ray in R3. As
mentioned earlier, a ray can be mapped to a unique
5-tuple, (x,y,z,u,v), consisting of its origin followed by
two spherical angles. Unfortunately the beams associated

56

(~) ~ Computer Graphics, Volume 21, Number 4, July 1987

with hypercubes under this mapping are not generally
polyhedra. To remedy this, we piece together several
mappings which have the desired properties locally, and
together account for the whole space of rays.

Consider the intersection of a ray with an
axis-aligned cube of side two centered at its origin. Each
distinct ray direction corresponds to a unique intersection
point on this cube. A 2D coordinate system can be
imposed on these points by normalizing the ray direction
vector, d, with respect to the ¢o-norm, as shown in
Equation 1, and extracting (u,v) from the result, as shown

in Equation 2.

d (dx, dy, d z)
w - - [1 1

Ildlloo MAX(Idxl, Idyl, Idzl)

I
(w y , w z) i f w x = ± 1 , o r e lse

(u , v) = (Wx, W z) i f w y = :t:1, o r e lse [2]

(W , W y) i f W z = ::t:1

This establishes a one-to-one correspondence between
[-1 ,1Ix[-1 ,1] and rays passing through a single face of
the cube. By partitioning the rays into six dominant
directions defined by the faces of the cube, and restricting
the mapping to each of these domains, we obtain six
bicontinuous one-to-one mappings. We associate each
with a dominant axis, denoted +X, -X, +Y, -Y, +Z, or -Z .
The inverse mappings, or parametrizations, define an
atlas of $2, covering the set of ray directions with images
of [-1 ,1]x[-1 ,1] . This is trivially extended to R3xS2. In
order to meet our requirement of a global one-to-one
correspondence, however, we index into six "copies" of
[-1 ,1]x[-1 ,1] using the dominant axis of a ray. For a
given ray, this axis is determined by the axis and sign of
its largest absolute direction component.

Intervals in U and V together define pyramidal solid
angles through a single cube face while intervals in X, Y,
and Z define rectangular 3D volumes. Hypercubes then
define beams which are unbounded polyhedra with at
most nine faces. This is shown in Figure l b along with a
2D analogy as an aid to visualization in Figure la .

3. T h e 5D B o u n d i n g V o l u m e

The first step of the ray classification algorithm is to
find a bounded subset of R5 containing all rays which are
relevant to the environment. We start by finding a 3D
bounding box, B, which contains all the objects of the
environment. Such a box is easily obtained from
individual object extents. The desired bounding volume
can then be built from six copies of the hypercube
Bx[-1 ,1]× [-1 ,1] , each corresponding to a unique
dominant axis and accounting for directions covering one
sixth of the unit sphere, S2.

The 3D bounding box, B, also serves another
purpose. If the eye point is outside of B, then every
first-generation ray must be checked for intersection with
it. If there is no intersection, we know the ray hits
nothing in the environment. Otherwise, the ray must be

moved into the 5D bounding volume by resetting its origin
to the point of intersection.

Other bounding volumes can be used in place of B for
this second purpose. For instance, plane-sets [8] can
produce a much tighter bound, thereby identifying more
rays which miss all the objects in the environment.
Another advantage lies in ray re-origining. By pushing
the rays up to the boundary of the tighter volume, we
reduce the space of rays, making the space subdivision
task more efficient.

U interval

XY intervals

XYU intervals

UV intervals

XYZ intervals

x Y z u v intervals

Figure la .
Beams in 2-Space.

Figure lb .
Beams in 3-Space.

4. 5D Space Subdivision

When intersecting a ray with the environment we
need only consider the set of objects whose bounding
volumes are intersected. The purpose of tasks [] through
[] in section 2 is to produce a set of objects containing
these, and few others, for any ray in the environment.
This is done efficiently by exploiting scene coherence,
which ensures that similar rays are likely to intersect
similar sets of objects. Due to the continuity of our ray
parametrizations, this implies that decreasing the
diameter of a hypercube increases the likelihood that the
rays of its beam behave similarly. The role of 5D space
subdivision is to produce hypercubes which are
sufficiently small that the rays of each corresponding
beam intersect approximately the same objects. This
allows us to share one set of candidate objects among all
the rays of a beam.

We use binary space subdivision to create a
hypercube hierarchy, dividing intervals exactly in half at
each level, and repeatedly cycling through the five axes.
Any ray can be contained in a hypercube of arbitrarily
small diameter by this mechanism. Given that we use
only a sparse subset of the potential rays, however, it is
unnecessary to finely subdivide the entire 5D bounding
volume. Instead, we confine subdivision to occur in those
regions populated with rays generated during ray tracing.
We subdivide only on demand, when the 5D coordinates

57

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

of a ray are found to reside in a hypercube which is too
large. Thus, beginning with the six bounding hypercubes,
we construct the entire hierarchy by lazy evaluation.

When a ray causes new paths to be formed in the
hypercube hierarchy, two heuristics determine when
subdivision terminates. We stop if either the candidate
set or the hypercube falls below a fixed size threshold. A
small candidate set indicates that we have achieved the
goal of making the associated rays inexpensive to
intersect with the environment. The hypercube size
constraint is imposed to allow the cost of creating a
candidate set to be amortized over many rays.

5. Candidate Set Creation

Given a hypercube, the task of creating its candidate
set consists of determining all the objects in the
environment which its rays can intersect. This is done by
comparing each object 's bounding volume with the beam
defined by the hypercube. If the volumes intersect, the
object is classified as a candidate with respect to that
hypercube and is added to the candidate set.

The six bounding hypercubes are assigned candidate
sets containing all objects in the environment. As
subdivision proceeds, candidate sets are efficiently
created for the new hypercubes by making use of the
hierarchy. Only those objects in an ancestor 's candidate
set need be reclassified.

For space efficiency, we need not create a candidate
set for every intermediate hypercube in the hierarchy.
When a hypercube is subdivided along one axis, the
beams of the resulting hypercubes usually overlap
substantially, and are quite similar to the parent beam.
Consequently, a single subdivision eliminates few
candidates. This suggests performing several subdivisions
before creating a new candidate set. A strategy which we
have found to be effective is to subdivide each of the five
axes before creating a new candidate set. While this
allows up to 2 s hypercubes to derive their candidate sets
from the same ancestor, the reduction in storage is
significant. Also, due to lazy evaluation of the hierarchy,
it is rare that all descendants are even created.

5.1 Object Class i f icat ion

The object classification method used in candidate set
creation is critical to the performance of the ray tracer. A
very fast method may be too conservative, creating
candidate sets which are much too large. This causes
unnecessary overhead in both candidate set creation and
processing. A classifying method which performs well in
rejecting objects may be unacceptable if it is too costly.
As with object extents used for avoiding unnecessary
ray-object intersection checks, there must be a
compromise between the cost of the method and its
accuracy [17]. In the following subsections we discuss
the tradeoffs of three object classification techniques
which can be used independently or in combination.

5.1.1 Classifying Objects with LP

The first object classification method we describe
employs linear programming to test for object-beam
intersection, and requires objects to be enclosed by
convex polyhedra. A polyhedral bounding volume is
conveniently represented by its vertex list, or hull points,
and can be made arbitrarily close to the convex hull of
the object. Since the beam is itself a polyhedron, the
object classification problem reduces to test ing for
intersection between two polyhedra. This is easily
expressed as a linear program using the hull points [12]
and then solved using the simplex method [13]. The
result is an exact classification scheme for this type of
bounding volume. That is, an object is classified as a
candidate of a hypercube if and only if some ray of the
beam intersects its bounding polyhedron.

Unfortunately, our experience has shown that the
computation required to solve the linear program is
prohibitively high, precluding its use as the primary object
classification method. It is overly complex for handling
the very frequent cases of objects which are either far
from the beam or inside it. Nevertheless, it is a useful
tool for testing and evaluating the effectiveness of
approximate object-classification methods.

5.1.2 Classifying Objects with Planes

The linear programming approach rejects an object
from the candidate set if and only if there exists a
separating plane between the beam and the object 's
bounding polyhedron. This suggests a simpler approach
which tests several planes directly, classifying an object as
a candidate if none of the planes are separators.

For every beam there are several planes which are
particularly appropriate to test, each with the entire beam
in its positive half-space. Four of these planes are
parallel to the faces of the UV pyramid, translated to the
appropriate XYZ extrema of the hypercube. Up to three
more are found "behind" the beam, containing faces of
the XYZ hypercube extent. If all of the vertices of an
object 's bounding polyhedron are found to be in the
negative half-space of one of these planes, the object is
rejected. The half-space tests are greatly simplified by
the nature of these planes, since all are parallel to at least
one coordinate axis.

This method is fast and conservative, never rejecting
an object which is actually intersected by the beam. It is

also approximate, since objects will be erroneously
classified as candidates when, for example, their
bounding polyhedra intersect both a U and a V plane
without intersecting the beam.

5.1.3 Classifying Objects wi th Cones

Another approach to object classification uses spheres
to bound objects and cones to approximate beams. This
is similar to previous uses of cones in ray tracing.
Amanatides [1] described the use of cones as a method of
area sampling, providing accurate and inexpensive
anti-aliasing. Kirk [9] used cones as a tool to calculate
proper texture filtering apertures, and to improve
anti-aliasing of bump-mapped surfaces. In our context,
cones prove to be very effective for classifying objects
bounded by spherical extents.

58

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

TO create a candidate set for a hypercube we begin by
constructing a cone, specified by a unit axis vector, W, a
spread angle, 0, and an apex, P, which completely
contains the beam of the hypercube. If this cone does not
intersect the spherical extent of an object, the object is
omitted from the candidate set. The details of the
cone-sphere intersection calculation are given in both [1]
and [9]. We describe the construction of the cone below
with the aid of function F in Equation 3, which defines
inverse mappings of those described in section 2.2.

F (u , V) =

(1, u, v) if +Xis dominant

(- 1 , u, v) if - X i s dominant

(u, 1, v) if +Y is dominant

(u , - 1 , v) if - Y i s dominant

(u, v, 1) if +Z is dominant

(u, v , - 1) if - Z i s dominant

131

The cone axis vector, W, depends only on the
dominant axis of the hypercube and its U and V intervals,
(umin,umax) and (vmin, vmax). It is constructed by
bisecting the angle between the vectors A and B, which
are given by Equations 4 and 5.

A -- F(umin, vmax) [4]

B = F(umax, vmin) [5]
To find the cone spread angle we also construct

vectors C and D using Equations 6 and 7. We then
compute 0 as shown in Equation 8.

C = F(umin, vmin) [6]

D -- F(umax, vmax) [7]

0 = ~¢[AX(A/W, B/W, CgW, D / W) [8]

Once the axis and spread angle are known, the apex
of the cone, P, is determined by the 3D rectangular
volume, R, defined by the XYZ intervals of the
hypercube. The point P is located by displacing the
centroid of R in the negative cone axis direction until the
cone exactly contains the smallest sphere bounding R.
The resulting expression for P is given in Equation 9,
where R0 and R1 are the min and max extrema of R.

1% + R1 II R 0 - R1 IIz P - W [9]
2 2 SINe

The cone is used to classify all potential candidates
of the hypercube and is constructed only once per
hypercube. The comparison between the cone and the
object's bounding sphere is fast, making the cost of a
distant miss low. This reduces the penalty of infrequent
candidate list creation, the space saving measure
discussed in section 5.

A linear transformation, M, applied to an object can
also be used to modify its bounding sphere. By

transforming the center of the sphere by M and scaling its
radius by II M 112, we obtain a new sphere which is
guaranteed to contain the transformed object. The matrix
2-norm is given by x/(P(M 7M)) [11], where 0, the
spectral radius, is the largest absolute eigenvalue of a
matrix. If MTM is sparse, the eigenvalue calculation is
quite simple. An iterative technique like the power
method can be used for the remaining cases [5].

6. Ray Class i f icat ion

Every ray-environment intersection calculation begins
with ray classification, which locates the hypercube
containing the 5D equivalent of the ray. This entails
mapping the ray into a 5D point and traversing the
hypercube hierarchy, beginning with the bounding
hypereube indexed by the dominant axis of the ray, until
we reach the leaf containing this point. Due to lazy
evaluation of the hierarchy, this traversal may have the
side effect of creating a new path terminating at a
sufficiently small hypercube containing the ray if such a
path has not already been built on behalf of another ray.
If the candidate set associated with the leaf hypercube is
empty, we are guaranteed that the ray intersects nothing.
Otherwise, we process this set as described in the next
section.

7. Candidate Set Processing

Once ray classification has produced a set of
candidate objects for a given ray, this set must be
processed to determine the object which results in the
closest intersection, if one exists. To optimize this search
we continue to make use of object bounding volumes for
coarse intersection checks. We also reject objects whose
bounding volumes intersect the ray beyond a known
object intersection. This can further reduce the number
of ray-object intersection calculations, but still requires
that the ray be tested against all bounding volumes of the
candidate set.

We can remove this latter requirement by taking
advantage of the fact that all rays of a given beam share
the same dominant axis. By sorting the objects of the
candidate sets by their minimum extents along this axis,
then processing them in ascending order, we can ignore
the tail of the list if we reach a candidate whose entire
extent lies beyond a known intersection. This is an
enormous advantage because it can drastically reduce the
number of bounding volume checks in cases where the
ray intersects an object near the head of the list. For
example, in Figure 2 only the first two objects are tested
because all subsequent objects are guaranteed to lie
beyond the known intersection. By sorting the candidate
sets of the six bounding hypercubes along the associated
dominant axes before 5D space subdivision begins, the
correct ordering can be inherited by all subsequent
candidate sets with no additional overhead. Object
bounding boxes provide the six keys used in sorting these
initial candidate sets.

59

~ SIGGRAPH '87, Anaheim, July 27-31 1987

I
1

Figure 2.

:::.- ::ibeam i

[I dominant axis
3 4 5

Sorted candidates.

8. B a c k f a c e C u l l i n g

Though backface culling is a popular technique in the
field of computer graphics [10], it has previously been of
very limited use in ray tracing since polygons which are
not in the direct line of sight can still affect the
environment by means of shadows, reflections, and
transparency. When creating the candidate set of a
hypercube, however, it is appropriate to eliminate those
polygons which are part of an opaque solid and are
backfacing with respect to every ray of its beam. When
classifying with cones, this latter criterion is met if
Equation 10 is satisfied, where N is the front-facing
normal of the polygon, W is the cone axis, and 0 is the
cone spread angle.

N . w > SIN 0 [10]

Using this technique, rays headed in opposite
directions through the same volume of space may be
tested against totally disjoint sets of polygons. By
eliminating nearly half the candidates of most
hypercubes, backface culling greatly accelerates both the
creation and processing of candidate sets.

9. I m a g e C o h e r e n c e a n d C a c h i n g

Due to image coherence, two neighboring samples in
image space will tend to produce very similar ray trees.
This implies that successive rays of a given generation
will tend to be elements of the same beam. We use this
fact to great advantage by caching the most recently
referenced hypercubes of each generation and checking
new rays first against this cache. If a ray is contained, it
is a cache hit, and the previous candidate set is returned
immediately, without re-traversing the hypercube
hierarchy. Otherwise, we classify the ray by traversal and
update the cache with the new hypercube and candidate
set. Although hierarchy traversal is very efficient,
verifying that a point lies within a hypercube requires only
ten comparisons, a considerable shortcut.

A related caching technique is used exclusively for
shadows. Rays used for sampling light sources are
special because there is no need to compute the closest
intersection. It suffices to determine the existence of an
opaque object between the ray origin and the intersection
with the light source. If a given point in 3-space is in
shadow, nearby points are likely shadowed by the same
object. The shadow cache simply records the last object
casting a shadow with respect to each light source and
checks that object first, as part of the next shadow
calculation.

10. C a n d i d a t e Set T r u n c a t i o n

Because we cannot decide when one object occludes
another based on bounding volumes alone, a candidate
set must contain all objects whose bounding volumes
intersect the beam. Thus, even extremely narrow beams
can produce candidate sets which are large. This poses
no problem for candidate set processing because sorting
insures that far-away occluded objects will never be
tested. This does increase storage requirements,
however, by increasing the number of candidate sets
which contain a given object.

We can drop far-away objects from a candidate set at
the expense of a slight penalty incurred by rays which are
not blocked by the nearer objects. This is done by
truncating a sorted candidate set at a point where the
remaining objects are outside the XYZ extent of the
hypercube and marking this point with a truncation plane
orthogonal to the dominant axis. For example, in Figure
2 this could occur just before the fourth object. We
process a truncated candidate set differently only when no
object intersection is found in front of the truncation
plane. See Figure 3. In this case we re-position the ray to
the truncation plane, re-classify, and process the new
candidate set. Though this is similar to previous 3D
space subdivision techniques [3][4][7], we retain the
distinct advantages of sorting and backface culling within
the truncated candidate sets, as well as the ability to pass
rays through unobstructed regions of space with virtually
no work.

We reduce the cost of occasional re-classification
steps by adding a cache dimension indicating the number
of times a ray has been reclassified. This allows most
re-classifications to be done without traversing the
hypercube hierarchy. Moreover, re-reclassifying a ray
often results in a net gain by narrowing the included
volume as we proceed further away from the original ray
origin. See Figure 4.

Figure 3.
Set truncation.

Figure 4.
Beam narrowing.

11. F i r s t - G e n e r a t i o n Rays

First-generation rays have only two degrees of
freedom, making them easy to characterize, and
frequently outnumber all other rays, making them
important to optimize. Many ray tracing implementations
obviate the need for first-generation rays altogether by
means of more conventional scan-line or depth-buffer
algorithms. For extremely complex environments,
however, the value of these methods diminishes, since
they are forced to expend some effort on every object,
even those which do not contribute to the final image. It
is therefore worthwhile to examine ray tracing techniques
which can perform superlinearly on these rays.

60

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

The ray classification algorithm benefits in a number
of ways from the special nature of first-generation rays.
Because they originate from a degenerate 3D volume, the
eye point, first-generation rays can be classified using u
and v alone. This increases the efficiency of ray
classification by simplifying the traversal of the hypercube
hierarchy, which becomes a hierarchy of 2D rectangles.
Candidate set creation also benefits because the beams
associated with the degenerate hypercubes are non-
overlapping pyramids. Candidate sets are therefore cut in
half, on average, with every subdivision. This makes it
feasible to obtain smaller candidate sets, thereby speeding
up candidate set processing as well. The result of these
optimizations for first-generation rays is an image-space
algorithm which closely resembles the 2D recursive
subdivision approach introduced by Warnock [16].

12. S u m m a r y

We have described a method which accelerates ray
tracing by drastically reducing the number of ray-object
and ray-bounds intersection checks. This is accomplished
by extending the notion of space subdivision to a 5D
scheme which makes use of ray direction as well as ray
origin. Rays are classified into 5D hypercubes in order to
retrieve pre-sorted sets of candidate objects which are
efficiently tested for intersection with each ray. The
computational cost of intersecting a ray with the
environment is very low because similar rays share the
benefit of culling far-away objects, thereby exploiting
coherence. This technique can be used to accelerate all
applications which rely upon ray-environment inter-
sections, including those which perform Monte Carlo
integration [2][6]. Empirical evidence indicates that
performance is closer to constant time than previous
methods, especially for very complex environments.

13. R e s u l t s

All test images were calculated at 512 by 512 pixel
resolution with one sample per pixel for timing purposes.
All of the images in the figures were calculated at 512 by
512 pixel resolution and anti-aliased using adaptive
stochastic sampling with 5x5 subpixels and a cosine-
squared filter kernel. Figures 5a and b are false color
images of the recursive pyramid with four levels of
recursion, from [8]. The hue of the false color indicates
the number of ray-bounds checks which were performed
in the course of computing each pixel. The scale
proceeds from blue for 0 bounding volume checks to red
for 50 or more. Figure 5a depicts the performance of the
ray classification algorithm without the first-generation
ray optimization, and Figure 5b shows how performance
improves when this optimization is enabled.

The same basic model is instanced to ten levels of
recursion in Figure 5c. This environment contains over
four million triangles and was ray traced in 1 hour and 28
minutes (see table in Figure 6).

Figure 7 is a reflective teapot on a checkerboard, and
Figure 8 shows the original five Platonic Solids and the
newly discovered Teapotahedron.

Figure 9a shows the Caltech tree with leaves as they
might appear rather late in the year. Figure 9b is a false
color rendering with the same scale as described above.
The fine yellow and red lines at the edge of the dark blue
shadows in the false color image indicate shadow
calculations which required processing a candidate set.
The interior areas of the shadows are dark blue,
indicating very few bounding volume checks, due to the
shadow cache optimization.

The same tree is shown in Figure 10 rendered in false
color without leaves. Even though there are fewer
primitives, the number of ray-bounds checks is not much
different from that of the tree with leaves. This is due to
the difficulty of accurately classifying long arbitrarily
oriented cylinders.

Figure 11a is a true color image of a grove of 64
instanced trees with leaves. This environment contains
477,121 objects and was ray traced in 4 hours and 53
minutes. Figure 11b is a false color rendering of the
grove of trees.

We wish to compare the performance of our
algorithm with that of previous methods. Due to the
generosity of Tim Kay at Caltech, we were able to run
benchmarks using the same databases used in [8]. Since
we did not have access to a Vax 11/780 for our
benchmarks, we chose an Apollo DN570, which has
roughly the same level of performance. Kay and Kajiya
compared the performance of their program on the
recursive pyramid of Figure 9 with the performance
reported by Glassner [4]. Glassner's program took
approximately 8700 Vax 11/780 seconds to render the
scene, while Kay's program took approximately 2706
seconds, which translates roughly to a factor of 2.6
improvement after accounting for differences in the
scene. Our program took approximately 639 seconds on
an Apollo DN570, representing a further factor of 4.2
improvement.

A c k n o w l e d g e m e n t s

We would like to thank Rick Speer, both for
organizing an informal ray tracing discussion group at the
86 SIGGRAPH conference, and for directing' the
discussion toward coherence and directional data
structures. Pat Hanrahan deserves credit for supplying
the insight that directional classification of rays need not
be tied to objects. Thanks to Christian Bremser, John
Francis, Olin Lathrop, Jim Michener, Semyon Nisenzon,
Cary Scofield, and Douglas Voorhies for their diligent
critical reading of early drafts of the paper. Special
thanks to Olin Lathrop and John Francis for help in
defining and implementing the "ray tracing kernel", the
testbed used for this work, and to Jim Michener for his
many helpful technical comments. Resounding applause
to Tim Kay for making his pyramid and tree databases
available. Last but by no means least, thanks to Apollo
Computer and particularly to Christian Bremser and
Douglas Voorhies for making time available to perform
this work.

61

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

References

[1] Amanatides, John., "Ray Tracing with Cones,"
Computer Graphics, 18(3), July 1984, pp. 129-135.

[2] Cook, Robert L., Thomas Porter, and Loren
Carpenter., "Distributed Ray Tracing," Computer
Graphics 18(3), July 1984, pp. 137-145.

[3] Fujimoto, Akira,, and Kansei Iwata., "Accelerated
Ray Tracing," Proceedings of Computer Graphics
Tokyo '85, April 1985.

[4] Glassner, Andrew S., "Space Subdivision for Fast
Ray Tracing," IEEE Computer Graphics and
Applications, 4(10), October, 1984, pp. 15-22.

[5] Johnson, Lee W., and Riess, Dean R., "Numerical
Analysis," Addison-Wesley, 1977.

[6] Kajiya, James T., "The Rendering Equation,"
Computer Graphics 20(4), August 1986, pp.
143-150.

[7] Kaplan, Michael R., "Space Tracing: A Constant
Time Ray Tracer," ACM SIGGRAPH '85 Course
Notes 11, July 22-26, 1985.

[8] Kay, Timothy L. and James Kajiya., "Ray Tracing
Complex Scenes," Computer Graphics, 20(4),
August 1986, pp. 269-278.

[9] Kirk, David B., "The Simulation of Natural Features
using Cone Tracing," Advanced Computer Graphics
(Proceedings of Computer Graphics Tokyo '86),
April 1986, pp. 129-144.

[10] Newman, William M., and Robert F. Sproull.,
"Principles of Interactive Computer Graphics," 1st
edition, McGraw-Hill, New York, 1973.

[11] Ortega, James M., "Numerical Analysis, A Second
Course," Academic Press, New York, 1972.

[12] Preparata, Franco P., and Michael I. Shamos.,
"Computational Geometry, an Introduction,"
Springer-Verlag, New York, 1985.

[13] Press, William H., Brian P..Flannery, Saul A.
Teukolsky, William T. Vetterling., "Numerical
Recipes," Cambridge University Press, Cambridge,
1986.

[14] Rubin, Steve, and Turner Whitted., "A
Three-Dimensional Representation for Fast
Rendering of Complex Scenes," Computer Graphics
14(3), July 1980, pp. 110-116.

[15] Speer, L. Richard, Tony D. DeRose, and Brian A.
Barsky., "A Theoretical and Empirical Analysis of
Coherent Ray Tracing," Computer-Generated
Images (Proceedings of Graphics Interface '85), May
27-31, 1985, pp. 11-25.

[16] Warnock, John E., "A Hidden-Surface Algorithm for
Computer Generated Half-tone Pictures,", Ph.D.
Dissertation, University of Utah, TR 4-15, 1969.

[17] Weghorst, Hank, Gary Hooper, and Donald
Greenberg., "Improved Computational Methods for
Ray Tracing," ACM Transactions on Graphics, 3(1),
January 1984, po. 52-69.

62

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

Figure 6: R u n - t i m e Statist ics

All pixel, ray, and classify counts are in thousands

Pyramid Pyramid Tree Tree Grove Teapot Platonic
* '4 ** I0 Branches Leaves 64 Trees Solids

Objects 1024 4.2E6 1272 7455 477,121 1824 1405

Pixels 262 262 262 262 262 262 262

Shading Rays 262 262 262 262 262 262 262

37 28 133 150 128 187 224 Shadow Rays

Total Rays 299 290 395 412 390 534 515

Rays that hit 43 30 149 191 213 206 240

Beam/Object Classifies 10.50 117.06 16.01 17.02 46.46 47.71 10.41

Object Intersections 188 288 989 716 1884 523 4896

CPU Time, DN570 sec. 639 5335 2194 3230 17607 3100 2474

(sec/ray) 0.002 0.018 0.006 0.008 0.045 0.006 0.008

(sec/ray that hit) 0.015 0.178 0.015 0.017 0.083 0.015 0.010

Figure 7. Reflective Teapot

!i! I~

Figure 8. Platonic Solids

63

•
SIGGRAPH '87, Anaheim, July 27-31 1987

I ~ ~ ® ~ [IH[I

F igure 9a. Au tumn Tree Figure 9b. Fa l se Color Tree with Leaves

Figure 10. Leaf less Tree

F igure 11a. Grove o f Trees Figure l i b . Fa lse Color Grove of Trees

64

