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This document was inspired by http://math.ut.ee/ toomas_1l/harmonic_
analysis/ and gives the demonstration of the following theorem :

Theorem 1 (Impulsion train). The Fourier transform of a spatial domain impulsion
train of period T is a frequency domain impulsion train of frequency Q = 27t /T.
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Reminders

Fourier Coefficients

Let f be a T-periodic function, we have :
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The ¢y, are called the Fourier coefficients of f. This coefficient can be rewritten as an
integral over any interval of length 7. In particular, we will use :
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Proof. Let g(t) = f(t)e~"¥ It is a T-periodic function since we have :
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Equation (2) is said due to the fact that the integral of a T-periodic function is constant

over any interval of length 7" as can be seen from :
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Fourier Transform
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The Fourier transform F(w) of a real-valued function f(z) is defined by :
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The inverse Fourier transform is given by the relation
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When two functions are related by the Fourier transform, we note :
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We have the symmetry property :
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and the linearity property :
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The Dirac impulsion

The Dirac function 0(x) has the sifting property. If f is continuous at point a :
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The Fourrier transform of a translated Dirac is a complex exponential :
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Impulsion train
Let’s consider it(z) = 3 ., 0(z — pT) a train of T-spaced impulsions and let’s

compute its Fourier transform. We first rewrite f using its Fourier coefficients :
it(z) = Z cpette
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where Q = 27 /T. Using Eq. (2), we have :
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Since the function ¢ — &(t — pT') is null over the interval [—T/2,T/2] for p # 0, we
are left with only one term in the sumation :
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So finally we have an expression of the impulse train :
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Applying the symmetry property (5) to the Fourier transform of a Dirac (8) we find :
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Applying linearity (6) to expression (9) we finally get the equality (1). O



