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“Give me Stability
or

Give me Death”
     — Baraff’s other motto
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stability is all stability is all stability is allstability is all stability is all stability is all

• If your step size is too big, your simulation 
blows up.  It isn’t pretty.

• Sometimes you have to make the step size so 
small that you never get anyplace.

• Nasty cases: cloth, constrained systems.

• Solutions:

–Now: use explosion-resistant methods.

–Later: reformulate the problem.
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A very simple equationA very simple equation

ẋ kx= −

x

E kx= 1
2

2

A 1 - D particle governed by x = −kx where

k is a stiffness constant.

A 1 - D particle governed by x = −kx where

k is a stiffness constant.

••
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Euler’s method has a speed limitEuler’s method has a speed limit

h > 1/k:  oscillate.         h > 2/k:  explode!h > 1/k:  oscillate.         h > 2/k:  explode!
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Stiff EquationsStiff Equations

• In more complex systems, step size is 
limited by the largest k.  One stiff spring 
can screw it up for everyone else.

• Systems that have some big k’s mixed in 
are called stiff systems.
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A stiff energy landscapeA stiff energy landscape
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Example: particle-on-lineExample: particle-on-line

• A particle P in the 
plane.

• Interactive “dragging” 
force  [fx , fy].

• A penalty force [0,-ky]  
tries to keep P on  the 
x-axis.

• A particle P in the 
plane.

• Interactive “dragging” 
force  [fx , fy].

• A penalty force [0,-ky]  
tries to keep P on  the 
x-axis.

[fx , fy]

[0 , -ky]

•• Suppose you want Suppose you want PP to stay within a miniscule  to stay within a miniscule εε of the  of the 
xx-axis when you try to pull it off with a huge force -axis when you try to pull it off with a huge force ffmaxmax..

•• How big does How big does kk have to be?  How  have to be?  How small small must must hh be? be?
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Really big k.  Really small h.Really big k.  Really small h.

Answer:  h has to be so small that P will    
never move more than ε per step. 

Result:   Your simulation grinds to a halt.
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Implicit MethodsImplicit Methods

• Explicit Euler:  x(t+h) = x(t) + h f(x(t))

–This is the version we already know about.

• Implicit Euler:  x(t+h) = x(t) + h f(x(t+h))

–Evaluate the derivative at the end of the 
step instead of the beginning.

–Solve for x(t+h).

–More work per step, but much bigger steps.

–A magic bullet for many stiff systems.
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Implicit Euler for  x = −k xImplicit Euler for  x = −k x

x( t + h) = x(t)+ h f (x( t + h))

= x(t)− h kx( t + h)

= x( t)
1+ hk

x( t + h) = x(t)+ h f (x( t + h))

= x(t)− h kx( t + h)

= x( t)
1+ hk

•• Nonlinear: Approximate as linear,  using ∂Nonlinear: Approximate as linear,  using ∂ff  //  ∂∂xx..

•• Multidimensional: (sparse) matrix equation.Multidimensional: (sparse) matrix equation.

••
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One Step: Implicit vs. ExplicitOne Step: Implicit vs. Explicit

˙ , ( )x x x= − =0 1

h
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Correct Solution:

Implicit Euler Step:

Explicit Euler Step:
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Why does it work?Why does it work?

• The real solution to f = –kx is an inverse exponential.

• Implicit Euler is a decent approximation, approaching 
zero as h becomes large, and never overshooting.  
Hence, rock stable.

• Most problems aren’t linear, but the approximation 
using  ∂f / ∂x —one derivative more than an explicit 
method—is good enough to let us take vastly bigger 
time steps than explicit methods allow.
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