Fourrier transform of an impulsion train

Xavier Décoret

July 8, 2004

This document was inspired by http://math.ut.ee/~toomas_l/harmonic_ analysis/ and gives the demonstration of the following theorem:

Theorem 1 (Impulsion train). The Fourier transform of a spatial domain impulsion train of period T is a frequency domain impulsion train of frequency $\Omega=2 \pi / T$.

$$
\begin{equation*}
\sum_{p \in \mathbb{Z}} \delta(x-p T) \stackrel{F T}{\longleftrightarrow} \Omega \sum_{k \in \mathbb{Z}} \delta(x-k \Omega) \tag{1}
\end{equation*}
$$

Reminders

Fourier Coefficients

Let f be a T-periodic function, we have :

$$
f(x)=\sum_{k \in Z} c_{k} e^{i k \Omega x} \text { with }\left\{\begin{aligned}
\Omega & =\frac{2 \pi}{T} \\
c_{k} & =\frac{1}{T} \int_{0}^{T} f(t) e^{-i k \Omega t} d t
\end{aligned}\right.
$$

The c_{k} are called the Fourier coefficients of f. This coefficient can be rewritten as an integral over any interval of length T. In particular, we will use :

$$
\begin{equation*}
c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-i k \Omega t} d t \tag{2}
\end{equation*}
$$

Proof. Let $g(t)=f(t) e^{-i k \Omega t}$. It is a T-periodic function since we have :

$$
\begin{aligned}
g(t+T) & =f(t+T) e^{-i k \Omega(t+T)}=f(t) e^{-i k \Omega t} e^{-i k \Omega T} \\
& =f(t) e^{-i k \Omega t} \underbrace{e^{-i k 2 \pi}}_{=1}=g(t)
\end{aligned}
$$

Equation (2) is said due to the fact that the integral of a T-periodic function is constant over any interval of length T as can be seen from :

$$
\begin{aligned}
\int_{c}^{c+T} g(t) d t & =\int_{c}^{0} g(t) d t+\int_{0}^{T} g(t) d t+\underbrace{\int_{T}^{c+T} g(t) d t}_{t=u+T} \\
& =\int_{C}^{0} g(t) d t+\int_{0}^{T} g(t) d t+\int_{0}^{c} g(u) d u=\int_{0}^{T} g(t) d t
\end{aligned}
$$

Fourier Transform

The Fourier transform $F(\omega)$ of a real-valued function $f(x)$ is defined by :

$$
\begin{equation*}
F(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \tag{3}
\end{equation*}
$$

The inverse Fourier transform is given by the relation

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} d \omega \tag{4}
\end{equation*}
$$

When two functions are related by the Fourier transform, we note :

$$
f(x) \stackrel{F T}{\longleftrightarrow} F(\omega)
$$

We have the symmetry property:

$$
\begin{equation*}
\text { if } f(x) \stackrel{F T}{\longleftrightarrow} F(\omega) \text { then } F(x) \stackrel{F T}{\longleftrightarrow} 2 \pi f(-\omega) \tag{5}
\end{equation*}
$$

and the linearity property :

$$
\text { if }\left\{\begin{array}{l}
f(x) \stackrel{F T}{\stackrel{F T}{\longleftrightarrow}} F(\omega) \tag{6}\\
f(x) \\
\stackrel{~}{\longleftrightarrow}
\end{array} \quad \text { then }(\lambda) \quad \text { (} \omega+g\right)(x) \stackrel{F T}{\longleftrightarrow}(\lambda F+G)(\omega)
$$

The Dirac impulsion

The Dirac function $\delta(x)$ has the sifting property. If f is continuous at point a :

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(t) \delta(t-a) d t=f(a) \tag{7}
\end{equation*}
$$

The Fourrier transform of a translated Dirac is a complex exponential :

$$
\begin{equation*}
\delta(x-a) \stackrel{F T}{\longleftrightarrow} e^{-i a \omega} \tag{8}
\end{equation*}
$$

Impulsion train

Let's consider $i t(x)=\sum_{p \in \mathbb{Z}} \delta(x-p T)$ a train of T-spaced impulsions and let's compute its Fourier transform. We first rewrite f using its Fourier coefficients :

$$
i t(x)=\sum_{k \in Z} c_{k} e^{i k \Omega x}
$$

where $\Omega=2 \pi / T$. Using Eq. (2), we have :

$$
\begin{aligned}
c_{k} & =\frac{1}{T} \int_{-T / 2}^{T / 2} i t(t) e^{-i k \Omega t} d t=\frac{1}{T} \int_{-T / 2}^{T / 2} \sum_{p \in \mathbb{Z}} \delta(t-p T) e^{-i k \Omega t} d t \\
& =\frac{1}{T} \sum_{p \in \mathbb{Z}} \int_{-T / 2}^{T / 2} \delta(t-p T) e^{-i k \Omega t} d t
\end{aligned}
$$

Since the function $t \mapsto \delta(t-p T)$ is null over the interval $[-T / 2, T / 2]$ for $p \neq 0$, we are left with only one term in the sumation :

$$
c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{-i k \Omega t} d t=\frac{1}{T} \underbrace{\int_{-\infty}^{\infty} \delta(t) e^{-i k \Omega t} d t}_{=e^{-i \Omega 0}=1 \text { by }(7)}=\frac{1}{T}
$$

So finally we have an expression of the impulse train :

$$
\begin{equation*}
i t(x)=\frac{1}{T} \sum_{k \in \mathbb{Z}} e^{i k \Omega x} \tag{9}
\end{equation*}
$$

Applying the symmetry property (5) to the Fourier transform of a Dirac (8) we find :

$$
\begin{aligned}
e^{-i k \Omega(-x)} & \stackrel{F T}{\longleftrightarrow} 2 \pi \delta(-(-x)-k \Omega) \\
e^{i k \Omega x} & \stackrel{F T}{\longleftrightarrow} 2 \pi \delta(x-k \Omega)
\end{aligned}
$$

Applying linearity (6) to expression (9) we finally get the equality (1).

