
Occlusion Textures for Plausible Soft Shadows

Elmar Eisemann and Xavier Décoret

ARTIS-GRAVIR/IMAG-INRIA†

Abstract
Authors’ version: This paper presents a novel approach to obtain plausible soft shadows for complex dynamic
scenes and a rectangular light source. We estimate the lights occlusion at each point of the scene using pre-filtered
occlusion textures, which dynamically approximate the scene geometry. The algorithm is fast and its performance
independent of the light’s size. Being image based, it is mostly independent of the scene. No a priori information
is needed, in particular there is no caster and receiver separation, making the method appealing and easy to use.

1. Introduction

Shadows are very important to estimate the spatial relation-
ships of objects and to convey a sense of realism. For many
years, computer graphics concentrated mostly on point lights
which create hard shadows, surfaces being either lit or not.
In the real world, most light sources are not punctual and
create soft shadows made of umbra and penumbra regions.
In the umbra no direct light arrives, whereas in the penum-
bra the light source is only partially occluded. The incom-
ing light, or irradiance, at a small surface is given by a dou-
ble integral over the surface and the light source, of a func-
tion involving energy, visibility and orientation. Several ap-
proaches [AAM02, AAM03, ADMAM03] have shown that
the important information for convincing shadows lies in the
visibility contribution. Orientation can be factored out of the
integral. The problem thus simplifies to the calculation of
the light’s visible portion, which yet represents a challeng-
ing task. This paper presents a novel way to estimate this
visibility function with the following properties:

• shadows are plausible, continuous, smooth, and account
for real penumbrae (not just extended umbrae);

• the quality and speed of the method is independent of the
size of the light source and the penumbrae;

• the algorithm is almost independent of scene complex-
ity, does not require information about the scene and in-
tegrates well with various rendering paradigms (vertex
shaders, point and image based rendering,. . .);

• there is no need to distinguish shadow casters from re-
ceivers.

Our approach is inspired by previous work [KM99, SS98]
and exploits current graphics hardware to obtain real-time

† ARTIS is a team of the GRAVIR/IMAG laboratory, a joint effort
of CNRS, INRIA, INPG and UJF

performance for highly complex scenes. In general our
method does not lead to physically correct soft shadows,
as does no current real-time method. Nevertheless we show
that our approximation behaves well in several test cases and
compare the quality to reference solutions. Also we give a
short error analysis that could be applied in practice to ac-
celerate the algorithm.

The basic method described in this paper was originally
published in [ED06b] at SIBGRAPI 2006. This extended
version presents important implementation details,a solution
for sunlight shadows, not previously described optimizations
(Sec. 3.6), additional comparisons with previous work and a
deeper analysis (Sec. 4.2 and 4.1).

2. Previous work

Lots of research focused on shadows and an exhaustive
presentation is not possible here. We refer the reader to
[WPF90, HLHS03] for surveys.

Point light sources do not create penumbrae and amounts
to point-point-visibility. Image based techniques such as
shadow mapping [Wil78] exploit this, yielding performance
quasi independent of the actual scene complexity. This is
interesting for complicated objects, but the discrete na-
ture of images leads to aliasing. Percentage closer filter-
ing [RSC87,BS01,Ura05] uses several shadow map samples
to smooth the jaggy boundary of hard shadows. In [DL06],
statistics are used to smooth the aliasing, but can introduce
light leaks. Note that these artefact-smoothing methods are
sometimes use to produce smooth shadows that should not
be mistaken with soft shadows. Alternatively, shadow vol-
umes [Cro77] give higher quality as they use the real ob-
jects geometry, but potentially suffer from computation over-
head for costly for complex scenes (for vegetation, almost all
edges are a silhouette, yielding shadow quads overdraw and
expensive silhouette detection.

2 E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows

In principle soft shadows could be created by evaluating
several point lights. If sampling is too coarse, banding oc-
curs. Using too many samples yields expensive creation and
evaluation [Ura05], therefore, approximate methods have
been proposed. Brabec and Seidel calculate maximum un-
occluded radii on a depth map to approximate soft shad-
ows [BS02]. In [KD03], appropriate width values are pre-
calculated in a special map. Shadow maps have been used
in [SAPP05] to calculate, in a preprocess, a special deep
shadow map for a static light source, encoding occlusion
for each point of a static scene. Dynamic objects can be in-
serted but cannot cast soft shadows. The somewhat opposite
strategy was presented by Zhou et al. [ZHL∗05]; shadow in-
formation is faithfully precalculated per object. These static
elements can then be used dynamically. Due to huge stor-
age necessities, the result is compressed on basis functions
which are evaluated at run-time at each scene vertex, involv-
ing sorting. Agrawala et al. [ARHM00] warp several depth
images to obtain layered attenuation maps which can be
evaluated quickly at run-time. As the preprocess is quite in-
volving, light source and scene have to be considered static.
A purely image based approach has been presented by Arvo
et al. [AHT04]. The camera view is filtered to detect hard
shadow boundaries. Flood fill is used to create penumbrae
based on depth map information. This is not well supported
by the current graphics hardware. The cost depends heavily
on the size of the penumbra on the screen, which can be large
depending on viewpoint and light source. As inner penum-
bra creation is an erosion, overlapping umbras lead to a com-
plete disappearance and temporal incoherence. Although not
physically correct, their goal was to create plausible shad-
ows. We work in the same context but show in Section 4.1.
Recently Atty et al. [AHL∗06] presented an approach based
on a single depth map. Separating occluder and receiver,
depth map pixels replace the actual occluder and are pro-
jected on the receiving ground. The algorithm gives convinc-
ing results at high framerates but involves CPU usage which
limits texture resolution. Related techniques were presented
in [GBP06, BS06, ASK06], that replace the CPU interac-
tion by a slightly more expensive fragment shader and don’t
need the occluder receiver separation anymore. The run-time
complexity is linear with respect to the source’s size and al-
lows only to use rather small sources. Large sources also in-
duce visible temporal incoherences (compare Section 4.1).

Shadow-volume extensions for soft shadows have
been presented in [AAM02, AAM03, ADMAM03]. These
geometry-based wedges give high quality shadows but rely
on a silhouette determination from the center of the source.
Sampling artifacts are avoided and light sources can be tex-
tured [AAM03], but the approaches are unsuitable for highly
complex models. The combination of the contributions of
different occluders is done by additive accumulation. Hy-
brid approaches like [CD03] encounter such problems too.
Here supplementary primitives are attached to silhouettes to
describe the blocking influence of the edge. It is closely re-

lated to [PSS98] and results in alias free, not soft shadows,
just like [WH03]. In [KM99], the scene is replaced by an
MDI (Multiple depth image) obtained on the CPU, and ray-
tracing is performed against this alternative representation.
There are several similarities to our method and we will have
a more precise discussion in Section 4. Precise shadows and
accurate occluder fusion [ED07, SS07] have only been re-
cently introduced, but such approaches are more costly than
the here-presented solution.

3. Our approach

We approximate the shadow intensity at a point P for a rect-
angular light source S in the presence of an occluder O by
the integral:

I(P) :=
∫
S

vP(S)dS (1)

where vP is the visibility function defined by:

vP : S ∈ S → 1 if [P,S]∩O= ∅ else 0 (2)

In other words, we count the number of rays from P to S that
are not blocked by O. The shadow intensity function is three
dimensional and generally very complex. In subsequent sec-
tions, we present a GPU friendly approximation.

3.1. Single planar occluder

First we consider a single planar occluder parallel to the light
source. It is fully described by it supporting plane ΠO and
its characteristic function in that plane:

δ : ΠO �→ {0,1},Q → 1 if Q ∈ O else 0 (3)

Consider the frustum defined by a point P and the light, and
the region where it intersects the occluder plane. There is a
bijection between that region and light rays passing through
P. Therefore, the shadow intensity at P is the integral of 1−δ
over this region, normalized by the regions’s size (Fig. 1).
Because the light is rectangular and parallel to the occluder,

filter
P

Light source

Occl
uder

Figure 1: Shadow intensity as a filter.

this region is a rectangle whose size depends solely on the
distances of P to the light and occluder planes:

s(P) :=
d(P,ΠO)

d(P,ΠS)
× size(S) (4)

submitted to COMPUTER GRAPHICS Forum (7/2010).

E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows 3

The integral can be computed by filtering 1− δ with a box
filter of size s(P). Our approach is to encode 1− δ as a an
occlusion texture and to process it , as described in next sec-
tion, such that a point P can be shaded by simply computing
s(P) using eq. (4) and performing a lookup of the appropri-
ately filtered result.

3.2. Fast box filtering

To filter an occlusion texture with a rectangular kernel, we
investigated three approaches: Mipmapping, NBuffers and
Summed Area Tables.

Mipmapping was introduced to reduce aliasing of mini-
fied textures [Wil83]. It linearly interpolates between dyad-
ically downsampled versions of the texture. It is is widely
supported by GPUs and was a natural candidate to filter oc-
cluder textures. In particular, rectangular kernels are sup-
ported with anisotropic filtering. Thanks to linear interpo-
lation mipmapping gives smoothly varying shadows (Fi.2,
top). However, it suffers from blocky artefacts that become
particularly noticeable when the scene is animated. This re-
sults from the dyadic downsampling that may combine adja-
cent texels only at very high levels in the mipmap pyramid.
Therefore, a slight shift of the occlusion texture can lead to
large variations of the filtered function.

To alleviate this problem, Décoret introduced the
NBuffers [D0́5] to allow prefiltering with continuously
placed kernels. Originally this technique was used with a
max filter and applied for culling of geometry. We use them
to compute the mean value of neighboring pixels. Each level
l holds, for each texel, the normalized response of a box
filter with a kernel size of 2l × 2l . Via linear interpolation,
intermediate kernel sizes can be approximated. It still does
not compute the exact filtered function, but it significantly
reduces the blocky artifacts (Fig.2 bottom) in particular for
dynamic scenes. The construction of NBuffers is extremely
fast. For a 256×256 texture, 8 levels need to be created, each
of resolution 256 × 256. Approximately 500M pixels are
processed, each requiring exactly 4 texture lookups. Modern
graphic cards can perform more than 50 times this amount
of work at 30 fps.

Interestingly, the filtering by a rectangular kernel can
be exactly computed using Summed Area Tables (SAT)
[Cro84]. Unfortunately, although an efficient GPU imple-
mentation has been recently proposed [HSC∗05], this ap-
proach still suffers from several limitations. First, 32 bit tex-
tures are required or severe precision artifacts will appear† .
Currently, linear interpolation for such textures is not na-
tively supported (this is why texels are noticeable on the
close-up of Fig.2). Moreover, creation and transfer of such
textures increase the bandwidth, slowing down the process.

† Shifting the values, as suggested by the authors, is not useful in
our case, due to the bitmask nature of occluder textures

Speed is also impeded by the 4 texture lookups required to
get the filter’s response, when NBuffers require only one. Fi-
nally, contrary to NBuffers, the normalisation by the kernel
size cannot be embedded and thus requires extra computa-
tions. However, as expectable, the resulting quality is higher,
but the improvement does not compensate the performance
penalty.

We implemented the three approaches (Fig. 2). In our
opinion, NBuffers are currently the best tradeoff between
performance and quality. On future hardware though, SAT
may prove fast enough to become the preferred solution.
In particular, it uses a single texture which is more cache
friendly than the multiple textures required by NBuffers. To
be able to perform a fair comparison we used the same hard-
ware used in [HSC∗05]. Our implementation leads to ap-
proximately the same timings (it differs by 1.5ms except for
the case of a resolution of 512×512 where our implementa-
tion is 30% faster).

resolution Mipmap SAT NBuffers
(top) (middle) (bottom)

256× 256 < 1 ms 5.1 ms < 1 ms
512× 512 < 1 ms 21.9 ms 1.7 ms

1024× 1024 < 1 ms 96.8 ms 7.3 ms

Figure 2: Comparison of filtering methods.

3.3. Multiple planar occluders

We now consider several planar occluders. The shadows
caused by each occluder independently can be computed as
before. However, combining these shadows is a notably diffi-
cult problem. As pointed out in [SS98], the correct solution
lies between the sum and the maximum of the occluders’
contributions. Intuitively, two occluders can cover disjoint
or overlapping parts of the light source.

Previous approaches more or less address this problem.
In [SS98], the mean value between these two cases is sug-
gested as an ad hoc solution. Assarson et al. use wedges to
add or subtract light, and are thus inherently bound to com-
bine them additively [AAM02, AAM03, ADMAM03]. To
use a different combination method (still not exact) a costly

submitted to COMPUTER GRAPHICS Forum (7/2010).

4 E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows

clearing step becomes necessary after each silhouette loop
(see [ADMAM03]). Detecting silhouette loops also implies
a lot more work on the CPU. During their floodfill, Arvo
et al. [AHT04] need to keep track of the texel in a shadow
map responsible for occlusion. When combining the occlu-
sion for two such texels, it has to make a choice and therefore
selects the one with maximum occlusion.

Additive approaches quickly saturate (it produces occlu-
sion values greater than 100% that must be clamped) and
overestimate the umbra: shadows look too dark and cre-
ate unrealistic shadow gradients. Taking the maximum value
gives visually more appealing results, but tends to create too
bright shadows, in particular if the occluders are rather un-
structured, like the foliage of a tree. Also gradient reversals
happen easily in this situation. Taking the average does not
make that much sense either, because the maximum only
takes a single occluder into account, whereas the sum in-
volves all occluders. Thus the ranges of these two values are
too different to be meaningfully combined. We propose a
novel way to combine the contributions.

Our key observation is that the probability that a ray from
P to S is not blocked by the considered planar occluder is
exactly 1−V (P), where V is the shadow intensity function
given by eq.(1). If we consider several occluders with a uni-
form distribution of occlusion, the probability that a ray is
not blocked by the union of the occluders is the product of
the probabilities. Thus we propose to combine the shadow
intensities of several occluders using:

I1,...,n(P) :=
n

∏
k=1

(1− Ik(P)) (5)

This formula has the same advantages as the sum. If an oc-
cluder does not block any ray (Ik(P) = 0), it does not influ-
ence the result. If it blocks all rays (Ik(P) = 1), the resulting
intensity is zero. Compared to the maximum (Fig. 3), it does
combine all occluders instead of selecting only one.

3.4. General scene

To treat general scenes, we approximate the occlusion they
can cause with several occlusion textures. We cut the scene
in slices parallel to the light source, and project everything
inside a slice on its bottom plane (the one furthest from the
light source). This positional information is binary and thus
approaches like [DCB∗04, ED06a] could be used to recover
many layers at the cost of a single rendering step.

However, the more slices we have, the more texture
lookups we need to compute the combined shadow (note
that the cost of pre-filtering is mostly neglectable (see ta-
ble 2). Currently we use 4 to 16 slices which seems to
be a good tradeoff between speed and accuracy. To calcu-
late the occluder texture representation, each slice has to
be represented in one color channel. Multiple render targets
(MRT) give the possibility to write into 4 buffers at the same

time, thus we can directly associate the slices to the correct
color channel. This is related to lightweight methods such
as [ND05].

The 4 to 16 color channels each represent one occluder
texture. This pass is very fast and does not interfere with any
CPU or GPU based vertex animation. Furthermore it is com-
patible with any kind of representation that produces a depth,
such as point-based rendering, impostors, ray-tracing on
GPU. Packing in color channels allows to compute mipmap-
ping, NBuffers or SAT for four slices in parallel.

Thin occluder

Opaque occlusion texelLight source

Light leak

Figure 4: Orthogonal projection (left) causes more light
leaks than perspective one (right).

The camera used during this rendering pass is very im-
portant as it controls how the scene is sliced. It is disad-
vantageous to use an orthogonal projection. First, a very
large texture resolution is required for the camera’s frustum
to encompass the scene. Second, the projection onto occlu-
sion textures breaks continuous surfaces into patches along
lines not following the frustum center. The consequence is
that light can shine through, where it is actually blocked by
the real surface, causing light leaks (Fig.4). With perspec-
tive projection, the probability to have light leaks is much
lower. Figure (4) shows the difference. On this figure, you
can see that the center of projection (COP) is not placed on
the light source. The reason is twofold. First, it would re-
quire a large field of view to encompass the scene, increasing
texture distorsion. Second, during the shadow computations,
this would involve kernels that are large and that can jut out
from the occlusion textures (Fig.5). This would rise interpo-
lation as well as precision issues. Our choice is to place the
COP slightly behind the light source, at a distance d, and to
fit the frustum to the light source, choosing d so that the frus-
tum contains the scene. We want to emphasize that using a
projection from a particular COP only affects only the way
we “x-ray” the scene to approximate occlusion, not the areas
where shadows are computed. It does not relate to the ap-
proximation of silhouette edges from the center of the light
source as in other methods, nor to the recovery of a depth
map, which would only contain the first surfaces of a scene.

submitted to COMPUTER GRAPHICS Forum (7/2010).

E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows 5

Figure 3: Comparison of maximum (left), sum (middle) and our combining approach (right).

Kernel is almost of the size
of the occlusion texture

and even juts out on the right

Kernel are much smaller
and never jut out

with our offset projection

kernel size compared
to occlusion texture size

Figure 5: COP with offset: Filtering is simpler

Figure 6: Fixing light leaks for thin occluders.

Light leaks.

As we have seen, our choice of perspective projection al-
ready limits light leaks, but some may still occur. It will be-
come particularly visible in the case of thin geometry, such
as a butterfly wings (Fig.6). For such geometry, we project
each occlusion texture on its successor farther away from the
source in order to “close” the discontinuities. Note that the
projection can be performed virtually. During the slice cre-
ation, when converting distance into a color, it is sufficient
to fill the succeeding channel too. This introduces no extra
costs. Figure 6 shows how it drastically reduces the leaks.
This method does probably not handle all situations but in
practice, we did not encounter any leaks.

Projecting occlusion textures in this way affects the re-
sulting shadows but only slightly. Umbrae are a little over-
estimated and the shadow gradient slightly differs. Conse-

Sl
ice

Occlusion
Texture...would indicate that point P is in shadow!

P
 Using the occlusion texture of the slice containing P...

Figure 7: Auto-shadowing inside a slice.

quently, one can decide to enable this correction uniquely
for thin objects, as for others, light leaks will be unlikely.

Self shadowing.

Our method does not distinguish shadow casters and re-
ceivers. Every point in the scene is shadowed, using only the
occluder textures between it and the light source. The occlu-
sion texture corresponding to the slice containing the point is
not used, because any point in the slice would be shadowed
by its own projection in the occlusion texture (Fig. 7). Sim-
ply ignoring the containing slice would cause discontinuities
where the geometry crosses the clipping planes. Instead, we
linearly fade out the contribution of a slice depending on
the distance of the shaded point to the slice’s lower clipping
plane.

Using slices for self occlusion is a coarse approximation,
but it often works well in practice for the following reasons.
For a slice far away from a point, the occlusion texture actu-
ally provides a good approximation of the occlusion caused
by what is in the slice. For a slice nearby a point, it is theo-
retically more problematic but is often concealed by diffuse
illumination. Indeed, for a watertight object, the front-facing
faces block light from the back-facing ones. When they fall
in the same slice, this effect is missed. However, the dif-
fuse illumination for back-facing faces is zero and dominates
the incorrect shadowing. They appear dark as they should
(Fig.8). For non-watertight chaotic objects like trees, the dif-
fuse illumination contains high frequencies which hide po-
tentially incorrect shadowing. We insist that this concerns

submitted to COMPUTER GRAPHICS Forum (7/2010).

6 E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows

only nearby slices. For distant slices, self-shadowing be-
haves correctly.

Figure 8: Our shadowing (left) may miss close self-
occlusions. Fortunately diffuse illumination often compen-
sates (right).

3.5. Putting everything together

Figure 9 summarizes the algorithm. The scene is sliced and
projected onto occlusion textures, which involves one ren-
dering of the scene from the light’s point of view (Sec. 3.4).
These occlusion textures are pre-filtered with different ker-
nel sizes (Sec. 3.2). A second render pass is performed from
the observer’s point of view. For each point P of the scene, all
slices between it and the light source are visited. The shadow
caused by each slice is determined by performing a texture
lookup with a filter size corresponding to the projection of
light on the slice as seen from P. The shadow contributions
are combined using the formula (5) which performs better
than the maximum or the additive approach (Sec. 3.3). The
contribution of the slice closest to P is weighted according
to the distance of P to the slice, in order to obtain smooth
inter-slice variation of the shadow intensity. The result is
then combined with per-pixel Phong shading and textures.

3.6. Implementation details

Conceptually, the algorithm is simple (see alg. 1). To shade
a fragment, we retrieve the corresponding world point W .
Then, for each occlusion texture, we find the kernel position
p and size s implied by W and the light, deduce the surround-
ing NBuffer levels l and l + 1, lookup filtered occlusion in
these levels, linearly interpolate the values, and accumulate
the occlusion. The problem is that this approach is not im-
plementable for two reasons. First, shaders currently do not
allow dynamic access of an array of textures. Line 6 and 7
thus cannot be translated to shader instructions. The second
problem is that currently, shaders can only access a fixed

Algorithm 1 ideal computation of visibility V for fragment
f and light L

1: V = 0
2: W = world_coordinate(f)
3: for i in occlusion_textures do
4: p, s = kernel_pos_and_level_for(W ,L,i)
5: l = �s�
6: vlo = lookup(p,nbuffers[l])
7: vhi = lookup(p,nbuffers[l+1])
8: v = (1− (s− l))vlo+(s− l)vhi
9: V = accumulate(v,V)

10: end for

number of textures, typically 16. If we use 4 occlusion tex-
tures of 256 × 256 (thus encoding 16 slices in the RGBA
channels), we need 8 = log2(256) levels of NBuffers. Even
on a simple configuration like this, 4 ∗ 8 = 24 different tex-
tures are used. We get around these two problems by using
texture packing, and sequencing the algorithm in a way that
texture arrays are accessed statically.

Let’s start with packing. Our 16 slices are encoded in 4 oc-
clusion textures. Instead of generating 8 NBuffers for each,
we generate 8 textures and pack in texture i the NBuffer
level i for each occlusion texture (resulting in 8 textures of
4× 256× 256). We now use only 8 textures instead of 24.
With a resolution of 2048×2048, we would only need three
more NBuffer levels, thus still fitting the 16 textures limita-
tion (and in particular leaving 5 textures usable for conven-
tional shading). .

Let’s now see how we re-order the algorithm. The key ob-
servation is that each slice i should be filtered with a kernel
of size si, and that si is strictly increasing from the slice clos-
est to the shaded point to the slice closest to the light. Thus,
we can loop over the NBuffer levels l in order of increas-
ing kernel size sl , and increment a current slice index i. This
index is initialized with the slice closest to the point and is
increased every time si < sl . Because of packing, this index
is a shift of the horizontal texture coordinate used to access
the current NBuffer level. This second version (see alg.2)
works because the loop at line 5 is a static one, completely
determined by the resolution of the occlusion textures.

Line 8 requires a comment. Because we encode four slices
in the RGBA channels of each occlusion texture, increas-
ing the current slice index is a bit more tricky than using
i= i+1. Luckily, this can be done efficiently using the swiz-
zle operator of shading languages, and clever tricks. We use
a float4 for slice index and implement line 8 and 9 with
i=i.yzwx and delta += i.w*packing_offset.
Then, in line 12 and 13, when we do the lookup, we get back
four slices as one RGBA color, and we extract the relevant
one by doing a dot product with i. Note that this approach
is purely arithmic and no branching is used (also conceptu-

submitted to COMPUTER GRAPHICS Forum (7/2010).

E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows 7

Prefilter occlusion textures -
several slices are treated at once

Rendering from eye - accumulate shadow
contributions (this image uses 4 slices)

1 2 4

3

Rendering from light:
get occlusion textures

For each slice
between point and
ligh, lookup filtered
response in occlusion
texture at the needed
level

Figure 9: Summary of our algorithm.

Algorithm 2 practical computation of visibility V for frag-
ment f and light L

1: V = 0
2: W = world_coordinate(f)
3: i = index_slice_closest_to(W)
4: p, s = kernel_pos_and_level_for(W ,L,i)
5: δ = i*packing_offset
6: for l in nbuffers_levels do
7: while s <kernel_size_for_level(l) do
8: i = i+1
9: δ += packing_offset

10: p, s = kernel_pos_and_level_for(W ,L,i)
11: end while
12: vlo = lookup(p+δ,nbuffers[l])
13: vhi = lookup(p+δ,nbuffers[l+1])
14: v = (1− (s− l))vlo +(s− l)vhi
15: V = accumulate(v,V)
16: end for

ally, it amounts to tests, and can also be implemented using
if/then constructs).

A couple of other optimization can be done, but are not
presented here for conciseness. In particular, packing offset
and kernels position/size actually only depend on the dis-
tance from the shaded point to the COP. This simplifies and
factors several computations. Deferred shading is also used
to avoid doing computations on hidden fragments. We be-
lieve the reader can figure out these details by himself, and
only focused on describing the nifty part of the algorithm. A
detailed implementation will be available on the paper web-
site.

3.7. Future Hardware Extensions

In DirectX 10 texture stacks will be introduced, that would
make the presented work-around unnecessary and will im-
prove our performance even further.

One possibility nowadays is to arrange NBuffer levels in

a 3D texture making the linear interpolation automatically
available without extra cost. Currently, even though the func-
tion to render into 3D texture slices is documented it is not
yet implemented in the drivers. Having this option the tex-
ture packing would also become unnecessary, making the al-
gorithm even more efficient. Also the amount of texture units
is increased making it possible to keep the textures separate
without performing packing. Currently in our implemena-
tion, 16 slices impose a maximal resolution of 20962. This
is very acceptable, but texture stacks will even lift this re-
striction completely.

As mentioned before more than 16 slices could be gen-
erated from the scene using techniques as in [DCB∗04,
ED06a]. Redistributing the slices into color channels can be
done independently of the scene geometry. This would also
allow to do a first scene analysis to better fit slices to the
objects. Currently we simply use a uniform distribution. An-
other interesting aspect is the fact that 32 bit textures will
become available. Thus in one color channel several occlu-
sion layers could be packed. This would make the lookups
more cache friendly and accelerate the algorithm even fur-
ther. New hardware will be based on scalar rather than vec-
tor processors, which is perfect for our purposes, because the
color channels are treated separately in our algorithm and
color is not use in its standard meaning.

4. Results and discussion

Our work is similar in spirit to that of Keating and
Max [KM99] but the field of application is completely dif-
ferent. Their approach does not aim at real time and targets
ray-tracing. Even without averaging several rays, it is still
presented in a form that would not allow real-time perfor-
mance. It uses small kernels mostly to avoid noise and ap-
plies it similarly to percentage closer filtering [RSC87]. In-
stead, we use convolution for acceleration purposes. We pre-
sented several solutions to approximate filtering efficiently,
rather than performing it. Our method thus treats large light
sources without penalty. Occlusion textures are efficiently
created on the GPU and we avoid any CPU interaction. We

submitted to COMPUTER GRAPHICS Forum (7/2010).

8 E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows

combine contributions differently, based on probability, and
obtain convincing results without evaluating several sample
rays. Of course, ray-tracing produces more realistic images.

We implemented our method using Cg 1.5 shading lan-
guage and OpenGL. To make it possible to compare our
algorithm to others we used the same test system as
in [AHL∗06](a 2,4 Ghz Pentium 4 with a GeForce 6800 Ul-
tra). Both the render pass to slice the scene and the computa-
tions of NBuffers are very fast, thus the rendering cost of our
method is dominated by the final render pass and is almost
the same in all our tests. Most of the images we show are lev-
els of gray. This is to emphasize the shadows. Our method
works seamlessly with textures and would even benefit from
their presence, since texture maps would mask minor shad-
owing artifacts. Similarly, most of our examples show cast
shadows on a flat ground to ease the perception. An arbi-
trary ground is possible. In practice it could be advantageous
to know that some elements of the scene are a floor and it
could be simply excluded from the slicing and afterwards
take all slices into account. In practice we did not rely on a
special treatment and we want to emphasize again that there
is no caster/receiver distinction in our methods. Grazing an-
gles on almost planar geometry can lead to problems

4.1. Quality Comparison

Our shadows are plausible and smooth even for extreme low
resolution of occlusion textures. Separately, each single oc-
clusion texture is piecewise linear and has a blocky appear-
ance for a low resolution. Combining non-aligned textures
leads to an artificial increase of resolution. This can be inter-
preted in terms of frequencies [DHS∗05]. Slices can be seen
as a decomposition of the shadow on basis functions. Each
slice is looked-up with distinct filter size and thus represents
a separate frequency range. A combination is a wealth of
information, that is not equivalent to a single texture. Nev-
ertheless, too low resolutions would still introduce artifacts
during animation. The smallest entity is a pixel, thus the
blocking contribution of very fine objects can be overesti-
mated or missed. This is a problem that we share with all
image based methods.

We believe that the introduction of occlusion textures to
shadows is very important. Depth map based approaches can
suffer from visible temporal incoherences for large sources
in even simple situations. Imagine a small occluder close to
the light. It might not even create an umbra region, but all
objects, that are hidden in the depth map will not cast any
shadow at all. Therefore whenever an object passes over an-
other one there is a flickering in the penumbra region. Atty et
al. [AHL∗06] relied on two shadow maps to overcome this
problem. Guennebaud et al. [GBP06] do not have this op-
tion, because they would need to separate occluder and re-
ceiver. Thus they are restricted to small sources not only by
performance but also quality issues. For small light sources,
due to a smaller overhead the technique is preferable, al-

though in this case percentage closer filtering approaches
work well. Our method has less problems with occlusion be-
cause we rely on a slicing. Nevertheless, slicing might miss
nearby occlusions, thus a slight flickering may still appear
for vertical movements and grazing angles as shown in the
accompanying video.

Interestingly although our approach is based on a very
coarse assumption, the results are very convincing. We tried
several very different test scenarios and compared our tech-
nique to a reference solution based on sampling.

The first scene is shown in figure ??. Even 4 slices give a
good approximation for the trees branches. Realize that the
overlapping of the branches would cause severe problems for
depth map based methods. The fact that the shadows of the
big tree are very accurate on the ground is not a coincidence.
In fact if you take a planar occluder and you move it by a dis-
tance ε it has more influence if the occluder was close to the
receiving point. Basically this influence is relative to the dis-
tance. Now in our case this movement is a projection, that is
almost vertical. which is even better, because the error is also
relative to the angle. In other words, the further away objects
are, the more aggressively they could be simplified. This is
directly exploitable in our algorithm as by recovering the re-
sult from one NBuffer texture we actually get the response
for 4 slices found at the same distance. Also if the ground
of the scene is known one could use more planes close to
the ground, less close to the light. Nevertheless in the cur-
rent implementation we did not make use of this. Because
we want to capture self occlusion and thus suppose that at
each height there is the same density of geometry (casting
and receiving). In this particular scene it would have been
a good idea to use less slices for the tree (in particular be-
cause the self occlusion is visible, but rather restricted) and
the shadows on the ground are more important.

The second scene is a frame from an animation with a
moving light. We did not even rely on bounding boxes and
did not place all slices on the bunny (In particular you see
the last slice being even unusable). We then stopped the an-
imation at a random point. Again distant shadows are well
approximated with a little number of slices. Whereas self
shadowing of the ears is lost using 4 slices.

The next scene shows the dragon casting a shadow on an
uneven ground. Still we remain close to the original solution.
The ground is not treated any different than the dragon in
this scene, there is no separation. As usual the highest error
occurs at detailed geometry level.

The complicated box scene from figure 3 is interesting as
it shows that our probabilistic combination is a very good
trade-off between the two extremities.

Finally figure 3 shows the influence of texture resolution.
For big lights several image based approaches argued that it
is sufficient to take low resolution textures. This is not gen-
erally true. The tree details would be missed, making the

submitted to COMPUTER GRAPHICS Forum (7/2010).

E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows 9

shadows flicker slightly when the texture resolution is very
low. Even though the still looks appealing. The quality is
high even for lower resolutions, when zooming in we can
see the artifacts from sampling with almost 1000 samples.
The light source is huge (the size of the whole scene) and
the branches add an almost random noise, whereas our ap-
proach smoothes these artifacts out due to the filtering.

4.2. Timings

In this section we compare the speed of our algorithm
with the current state-of-the-art solutions by Assarson et
al. [ADMAM03] and Atty et al. [AHL∗06].

We used the jeep scene from [AHL∗06] with a varying
number of jeeps. It is obvious that geometry based algo-
rithms are quickly outperformed by image based techniques.
Soft shadow volumes do not scale to a usable amount of ge-
ometry. Atty’s algorithm behaves linear, just like ours, but
the fact that lots of fragments have to be projected on the
source, just like in Guennebaud’s approach, the algorithm
slows down rapidly with the number of occluding fragments.
We do not have to reproject, because this calculation is al-
ready inherent in the filtering, our solution depends solely
on a render step of the geometry not the scene configuration.
We want to underline that we compared with our solution
using 16 slices and a more than four times higher texture res-
olution, even though 4 slices and 1282 would already have
given a satisfactory result. Not only can we deal with big
texture sizes, we also outperform the current state-of-the-art
image based soft-shadow algorithm that even benefits from
an occluder/receiver separation and cannot treat self shad-
owing.

Finally figure ?? depicts a more challenging scene, and
our resulting frame rate. Each bunny has approximately
70.000 polygons, thus leading to a final complexity of almost
500.000 polygons and we still have a real-time performance.

5. Conclusion and Future Work

We presented a novel image-based soft shadow algorithm,
that is fast and especially well-adapted to GPU. It does
not rely on precalculation and integrates smoothly with
animated scenes. The resulting shadows are plausible al-
though not physically correct. In particular, inner and outer
penumbrae are handled. Although the method is image
based, shadows are smooth, even at low texture resolution.
Some artifacts can occur, due to the limited number of
slices/resolution and approximated filtering; self-occlusion
might fail locally and a slight flickering can occur for verti-
cal movements as the weighting for the closest slice changes.
However, the complex task of inter-object shading is seam-
lessly handled, through the introduction of a novel way of
combining shadow contributions based on probabilities. No
distinction between casters and receivers is required. The
method is output sensitive depending only on the amount of

shaded points rather than on the nature or size of the shadow.
To our best knowledge, it is the only approach that possesses
all these properties. It outperforms current state-of-the art
algorithms and delivers very convincing shadows relatively
close to the ground truth.

An important area of future investigation concerns the
slice placement. Litmaps introduced in [D0́5], or CC
Shadow volumes [LWGM04] could serve to determine the
receivers in a scene, thus we can based on this information
place less slices in the remaining part based on the men-
tioned error measure. It is possible to create per object rep-
resentations, relating to the idea that the slices should evolve
in a “continuous” way with objects and viewpoint.

Finally, hierarchical branching could be interesting, as
one lookup gives us information about four slices. On our
test hardware, it is currently not advantageous, showing that
shader optimization becomes difficult.

Acknowledgements: We thank the reviewers for their comments
and remarks. Special thanks go to S. Lefebvre for his suggestions
and very early input. We also thank especially C. Soler and H. de
Almeida Bezerra for several discussions. We want to thank U. As-
sarson, L. Atty, N. Holzschuch, M. Lapierre, J.-M. Hasenfratz, C.
Hansen and F. Sillion for the comparison with our algorithm. Stan-
ford, DeEspona for the models.

References

[AAM02] ASSARSON U., AKENINE-MÖLLER T.: Ap-
proximate soft shadows on arbitrary surfaces using
penumbra wedges. In Proc. of Workshop on Rendering’02
(2002), Springer Computer Science, Eurographics, Euro-
graphics. 1, 2, 4

[AAM03] ASSARSON U., AKENINE-MÖLLER T.: A
geometry-based soft shadow volume algorithm using
graphics hardware. In Proc. of Siggraph’03 (2003). 1,
2, 4

[ADMAM03] ASSARSON U., DOUGHERTY M.,
MOUNIER M., AKENINE-MÖLLER T.: An opti-
mized soft shadow volume algorithm with real-time
performance. In Proc. of Workshop on Graphics
Hardware’03 (2003). 1, 2, 4, 9

[AHL∗06] ATTY L., HOLZSCHUCH N., LAPIERRE M.,
HASENFRATZ J.-M., HANSEN C., SILLION F.: Soft
shadow maps: Efficient sampling of light source visibil-
ity. Computer Graphics Forum (2006). 2, 8, 9

[AHT04] ARVO J., HIKORPI M., TYYSTJÄRVI J.: Ap-
proximate soft shadows with an imag-space flood-fill-
algorithm. In Proc. of Eurographics’04 (2004). 2, 4

[ARHM00] AGRAWALA M., RAMAMOORTHI R.,
HEIRICH A., MOLL L.: Efficient image-based methods
for rendering soft shadows. In Proc. of Siggraph’00
(2000). 2

submitted to COMPUTER GRAPHICS Forum (7/2010).

10 E. Eisemann & X. Décoret / Occlusion Textures for Plausible Soft Shadows

[ASK06] ASZODI B., SZIRMAY-KALOS L.: Real-time
soft shadows with shadow accumulation. In Short Paper
Eurographics (2006). 2

[BS01] BRABEC S., SEIDEL H. P.: Hardware-accelerated
rendering of antialiased shadows with shadow maps. In
Proceedings of CGI’01 (2001). 1

[BS02] BRABEC S., SEIDEL H.: Single sample soft shad-
ows using depth maps. In Proc. of Graphics Interface’02
(2002). 2

[BS06] BAVOIL L., SILVA C. T.: Real-time soft shad-
ows with cone culling. In Technical Sketch at SIGGRAPH
(2006). 2

[CD03] CHAN E., DURAND F.: Rendering fake soft shad-
ows with smoothies. In Proc. of Symposium on Render-
ing’03 (2003). 2

[Cro77] CROW F.: Shadow algorithms for computer
graphics.in computer graphics. In Proc. of Siggraph’77
(1977). 1

[Cro84] CROW F. C.: Summed-area tables for texture
mapping. In Proc. of Siggraph’84 (1984). 3

[D0́5] DÉCORET X.: N-buffers for efficient depth map
query. In Proc. of Eurographics’05 (2005). 3, 9

[DCB∗04] DONG Z., CHEN W., BAO H., ZHANG H.,
PENG Q.: Real-time voxelization for complex polygo-
nal models. In Proc. of Pacific Graphics’04 (2004). 4,
7

[DHS∗05] DURAND F., HOLZSCHUCH N., SOLER C.,
CHAN E., SILLION F.: A frequency analysis of light
transport. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2005) 24, 3 (aug 2005). 8

[DL06] DONNELLY W., LAURITZEN A.: Variance
shadow maps. In Proc. of I3D’06 (2006). 1

[ED06a] EISEMANN E., DÉCORET X.: Fast scene vox-
elization and applications. In Proc. of I3D’06 (2006). 4,
7

[ED06b] EISEMANN E., DÉCORET X.: Plausible image
based soft shadows using occlusion textures. In Proceed-
ings of SIBGRAPI 2006 (Oct. 2006), pp. 155–162. 1

[ED07] EISEMANN E., DÉCORET X.: Visibility sampling
on GPU and applications. Computer Graphics Forum
(Proceedings of Eurographics 2007) 26, 3 (Sept. 2007),
535–544. 2

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.:
Real-time soft shadow mapping by backprojection. In Eu-
rographics Symposium on Rendering (2006). 2, 8

[HLHS03] HASENFRATZ J.-M., LAPIERRE M.,
HOLZSCHUCH N., SILLION F.: A survey of real-
time soft shadows algorithms. Computer Graphics Forum
22, 4 (Dec. 2003). 1

[HSC∗05] HENSLEY J., SCHEUERMANN T., COOMBE

G., LASTRA A., SINGH M.: Fast summed-area table gen-
eration and its applications. In Proc. of Eurographics’05
(2005). 3

[KD03] KIRSCH F., DOELLNER J.: Real-time soft shad-
ows using a single light sample. Journal of WSCG (2003).
2

[KM99] KEATING B., MAX N.: Shadow penumbras for
complex objects by depth-dependent filtering of multi-
layer depth images. In Proc. of Workshop on Render-
ing’99 (1999). 1, 2, 7

[LWGM04] LLOYD B., WENDT J., GOVINDARAJU

N. K., MANOCHA D.: Cc shadow volumes. In Proc. of
EG Symposium on Rendering’04 (2004), Springer Com-
puter Science, Eurographics, Eurographics Association. 9

[ND05] NGUYEN H., DONNELLY W.: Hair Animation
and Rendering in the Nalu Demo. Addison Wesley, 2005.
4

[PSS98] PARKER S., SHIRLEY P., SMITS B.: Single sam-
ple soft shadows. Tech. Rep. UUCS-98-019, University of
Utah, 1998. 2

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:
Rendering antialiased shadows with depth maps. In Proc.
of Siggraph’87 (1987). 1, 8

[SAPP05] ST-AMOUR J.-F., PAQUETTE E., POULIN P.:
Soft shadows from extended light sources with penum-
bra deep shadow maps. In Proc. of Graphics Interface’05
(2005). 2

[SS98] SOLER C., SILLION F.: Fast calculation of soft
shadow textures using convolution. In Proc. of Siggraph
’98 (1998). 1, 3, 4

[SS07] SCHWARZ M., STAMMINGER M.: Bitmask soft
shadows. Computer Graphics Forum (Proceedings of Eu-
rographics 2007) 26, 3 (Sept. 2007), 515–524. 2

[Ura05] URALSKY Y.: Efficient soft-edged shadows using
pixel shader branching. In GPU Gems 2 (2005), Addison
Wesley. 1, 2

[WH03] WYMAN C., HANSEN C.: Penumbra maps: Ap-
proximate soft shadows in real-time. In Proc. of Sympo-
sium on Rendering’03 (2003). 2

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. In Proc. of Siggraph’78 (1978). 1

[Wil83] WILLIAMS L.: Pyramidal parametrics. In Proc.
of Siggraph’83 (1983). 3

[WPF90] WOO A., POULIN P., FOURNIER A.: A survey
of shadow algorithms. IEEE Comput. Graph. Appl. 10, 6
(1990). 1

[ZHL∗05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-
Y.: Precomputed shadow fields for dynamic scenes. In
Proc. of Siggraph’05 (2005). 2

submitted to COMPUTER GRAPHICS Forum (7/2010).

