
Dynamic Label Placement for Improved Interactive Exploration
Thierry Stein∗

Grenoble Universities/INRIA
Xavier Décoret†

Phoenix Interactive

Figure 1: An example of dynamic labeling for a complex scene. See accompanying video for better demonstration.

Abstract

This work presents a novel approach for dynamically rendering an-
notations attached to a 3D scene. We formulate the problem as a
general optimization under constraints, accounting for certain desir-
able properties. To approximately solve the NP-hard optimization
problem in real-time, we present a particular heuristic that greedily
places labels while maintaining constraints. Typical greedy label
placement algorithms do not pay particular attention to the order
of placement and, as a result, suffer from the fundamental limita-
tion that successive labels get progressively more difficult to place.
We use algorithmic and mathematical tools that compensate for the
drawback of typical greedy approaches. In addition, they are well
suited for GPU implementation, because they are completely im-
age based. As a result, we can place tens of labels in real-time, as
demonstrated in this paper.

CR Categories: I.3.6 [Methodology and Techniques]: Interaction
techniques—Labelling

Keywords: Labelling, Apollonius diagram, SAT, GPU

∗Thierry.Stein@imag.fr
†x.decoret@phoenix-i.fr

1 Introduction

One striking characteristic of humans is the ability to communi-
cate rich and complex information. We have invented several ab-
stractions to communicate complex information simply— writing
and drawing being natural examples. It is impressive indeed, that
many tools available for expressing information today were, at
best, works of science fiction decades ago. As Hanrahan [Hanra-
han 2005] pointed out at his keynote speech at Eurographics 2005,
charts, pictorial graphs, diagrams, and spreadsheets are examples
of such tools.

The challenge when creating representations for communication is
that of abstraction and expressiveness. While the former enables
simplicity in communication by accounting for context, the latter
allows emphasis of certain ideas over others. The sheer bulk of
data that is available from more recent inventions such as the inter-
net have posed yet another challenge. Classification, organization,
indexes, comments and annotation are essential elements of pre-
senting what would otherwise be merely raw data, as information.

Of the many recent tools for effective communication, our interest
lies in 3D representations. Expressing information through 3D vi-
sualization has become popular for a wide gamut of applications
ranging from entertainment (video games e.g. World Of Warcraft,
Quake, etc) to serious applications (geolocalization, virtual tours,
cartography, medical visualization, etc). In addition, 3D graphical
communication has created a new form of social interaction (e.g.
Second Life). However, in most of these applications, the 3D visu-
alization alone is generally insufficient to effectively and compre-
hensively convey the information. While the 3D representation is
useful for presenting a view and helps immersion and localization

it is often overwhelming in terms of the amount of information con-
veyed. A key aspect in this communication with 3D representations
is labeling, or visibly attaching text that provides more information
about certain regions. Labeling has been a standard tool that en-
ables attaching information and also drawing attention to certain
regions. (e.g. life points of other players in WoW, name of avatars
in Second Life, description of shops in Google Maps and indicating
organ dimensions in medical applications).

Figure 2: World of Warcraft uses world-placed billboards to over-
lay labels onto a 3D view, which causes cluttering when too many
objects are close in screen space c©.

While labeling has been extensively used in 2D illustration, it is in-
deed challenging to extend and automate the labeling process for
images of 3D representations. Figure 2 shows a typically cluttered
view in WoW where the text indications enormously simplify quick
comprehension. In this paper, we tackle the problem of displaying
such information more optimally, which relates to labeling as re-
viewed in Section 2.

The key point here is that the viewpoint is “inside” the scene. A
consequence of being immersed is that label placement poses more
challenges than when labels have to be layed out “around” an an-
notated object, as typically the case in most existing work.

Rather than to produce aestethic (i.e close to what talented illus-
trators can do) layouts for particulars view, our goal is to guarantee
that all annotations relevant for the current viewpoint are adequately
presented to the user, while attempting to minimize interferance
with the 3D experience of scene navigation. In particular, we pay
attention to enforce temporal coherence.

2 Related Work
This work is mainly related to the one of map labeling, where al-
gorithms try to place annotations around points, lines or regions.
Finding an optimal solution to this problem has been proven to be
NP-hard [Marks and Shieber 1991]. The map labeling problem has
been extensively studied in the static 2D case. A good survey of the
most efficient solutions can be found in [Christensen et al. 1995].
Recently, [Daiches 2006] adressed the problem of zooming in the
map with consistent labeling.

External labeling is introduced by [Fekete and Plaisant 1999] as an
alternative to internal labeling for dense sets of points. Labels are
placed on the border of a circle containing anchor points. Their
algorithm is limited to the 2D case. A good formalization of the
static 2D case is found in [Bekos et al. 2005]. Labels are positioned

around an axis-aligned bounding box, and the length of leader lines
is minimized. The major limitation is that labels need to have a
common size. In [Vollick et al. 2007] the problem is cast as a min-
imization of an energy function. The motivation was to capture
style from a user-specified example, and reuse it to generate la-
bels on novel inputs. They use simulated annealing for resolution,
which needs a few minutes, and the approach is consequently non
interactive.

An early mention of 3D external labeling is found in [Preim et al.
1997] where the authors present an algorithm for coherent zoom-
ing. Additionaly, [Strothotte 1998] explain the problem of tempo-
ral coherence, and show two simple cases where there is no solu-
tion to prevent popping for a rotation. In [Bell et al. 2001], au-
thors present an algorithm for real-time 3D label placement using
a view-management strategy introduced in [Bell and Feiner 2000].
The scene is approximated by a set of bounding boxes, and labels
are interatively placed in the nearest empty rectangle. They also in-
troduce hysteresis to minimize temporal discontinuity. [Hartmann
et al. 2004] model the problem using potential fields. Labels are
positionned by diffusion of an energy, starting from the middle of
the scene. However, this algorithm does not manage all the con-
straints, and in particular, cannot prevent leader lines intersections.
They solve it by permutation of labels, which is not always valid for
labels of different sizes. [Ali et al. 2005] present a flexible pipeline
including different style. They are also limited to single line text
and they don’t manage objects with holes. Finally, [Götzelmann
et al. 2007] present a solution for animated 3D models. The main
restriction is that they need to analyze the entire animation, so it is
not applicable to interactive navigation.

3 Problem formulation
We start with a 3D scene with points of interest tagged with seman-
tic information. The user navigates the scene, and the information
is rendered overlayed on the 2D view. As an example, imagine a
virtual model of a museum gallery exposing statues. The pedestal
of each statue is tagged with its name, and the name of the artist
that committed it. On the Venus de Milo, the shoulders are tagged
with an explanation on why the arms are missing. On the David’s
head, a tag indicates that proportions are not anatomically correct,
but chosen so that they appear correct when seen from ground level.
When the user enters the gallery, all statues are visible, and only the
names are shown. When she moves closer to one statue, the related
information appears gradually. This example scenario is what we
call dynamic labeling. The term “label” is ambiguous. It refers both
to the semantic information (e.g. the text explaining what a point
of interest indicates), and to the rendering of that information (e.g.
the marks that are overlayed on the 2D view to display the text with
a particular font and alignment). Let’s first clarify the terminology
we use.

We call label the semantic information attached to a point of inter-
est, which is called the label’s anchor. The anchor is a 3D point
in the scene. The semantic information must contain a displayable
content, but it can also contain other information such as a category
id, an importance, etc. For a given view of the scene, a label’s an-
chor projects to a given 2D position that we call anchor point. The
label is rendered inside a 2D axis-aligned box that we call the label
box. The position and size of this box is what is to be determined
by our system. However, the aspect ratio of the box is fixed by the
content. We do not consider dynamically layed out content such
as [Jacobs et al. 2004]. We instead assume the content is given as
an “image” of given proportions by the user. Consequently, the size
of a label box can only controlled by a scale factor. Finally, we
call leader line the line that connects the anchor point to the center
of the label box. Figure 3 summarizes the terminology. We will

also use the following notations, where uppercase indicates input
values while lowercase indicates output values, to be computed :

Ai = Xi, Yi 2D coordinates of anchor point i

di = Wi, Hi width and height of label content i

ai = xi, yi 2D coordinates of the center of label box i

[ai,Ai] Leader line of label i

si scale factor applied to label content ; the label
box has 2D dimensions siWi × siHi

A

B

C

Label content for A

Label content for B

Label content for C

Anchors

3D Model 2D View

Label box

Anchor point

Leader line

Figure 3: Terminology used in dynamic labeling

The problem is thus as follows. Given a set of n labels’contents and
associated anchor points, how to best overlay label boxes onto the
scene view. For that, we must define what “best” means. We choose
the following criteria. Label boxes must not intersect each other, or
some information would not be visible. Leader lines must neither
intersect other leader lines nor label boxes, or the anchor/label re-
lation would not be immediately perceived. The label boxes should
not hinder the navigation: they should hide as less as possible of
the 3D scene, and they should move coherently over time. The
anchor/label relation should be as direct as possible: leader lines
should not be too long, so that the anchor point and the label box
are visually closed; and leader lines should be oriented along priv-
iledged directions. Finally, the label boxes scales should be as close
to 1 as possible.

The two first criteria are hard constraints (“must”). The last ones are
recommendations (“should”). Consequently, we model the problem
as an minimization under constraints. We search over the space of
all possible {xi, yi, si}i=1...n such that:

∀i 6= j [ai,Ai] ∩ [aj ,Aj] = {} (1)
B(ai, sidi) ∩ [aj ,Aj] = {} (2)
B(ai, sidi) ∩ B(aj , sjdj) = {} (3)

where B is an axis-aligned 2D rectangle specified by its center and
its diagonal vector. We minimize an energy function:

E({xi, yi, si}) = α
X

i

|aiAi| (4)

+ β
X

i

|1 − si|

+ γ
X

i

| cos θi| + | sin θi|

+ δ
X

i

ZZ

B(ai,sidi)

f(x)dx

where f is a positive real function defined (in image space) over
the current view, and whose role is explained in a moment. The

first term controls the length of leader lines. The second controls
that the labels are not scaled to 0. The third term is used to favor
leader lines that are horizontal or vertical, θi being the angle that the
leader line i does with the horizontal axis. The fourth term is used
to mesure how much the labels occludes the 3D scene underneath.
The function f is called occupancy function, and is obtained as
follow. Each surface in the scene is attached a user-specified scalar
value in [0, 1] that indicates how important it is that this surface
be not occluded by labels. For example, we would put 0 on walls,
and 1 on objects. This importance value can be view-dependent,
for example decreasing with the depth value of pixels. We render
a view of the scene from the current viewpoint using this value as
surfaces’s colors. The resulting image gives f . By integrating the
value of f over the label boxes, we have a measure of how the scene
is occluded by labels. By using this in the energy function, instead
of adding it as a constraint, we allow the algorithm to place labels
that hide some parts of the scene when it is not possible to find a
better placement. Yet, it will strive to occlude parts that are less
important first.

4 An Extended Greedy Algorithm

Minimizing eq.(4) under constraints eq.(1-3) is a complex task (NP-
hard) that cannot currently be done in real time. Our approach is to
solve it greedily. For each label whose anchor point is visible in the
current view, we choose (xi, yi, si) so that the contribution to E is
minimum, and so that the constraints are respected. This approach
does not yield the exact minimum, because the ordering of labels
matters. Moreover, this approach has in principal two drawbacks.
First, even if we reduce the dimension of the search space from 3n
to 3, it is still a large space to explore. Second, as common with
greedy algorithm, if we do not order labels adequately, we may end
up with the last labels highly increasing E, or worst, being impossi-
ble to place without violating the constraints, which would require
backtracking the previously placed labels. Figure 4-top/right shows
such a poor placement. We address these two problems as follows.

We reduce the search space by removing si from the minimization.
We simply fix the scale of label box i based on the distance to the
observer. This is a very crude simplification of our general formu-
lation, and the reader may argue that we should have omitted it in
the first place. Yet, we believe that adjusting the scale gives a lot of
flexibility to find an ideal label placement. Hence a general formu-
lation should include it, even if the solution presented in this paper
cannot yet take it into account. Indeed, reducing the dimension
of the search space to 2 is the key to interactivity. This allows to
use the GPU to very efficiently evaluate the cost of each candidate
(xi, yi), and then retrieve the minimum through matrix reduction,
as shown in Section 5.

Further, we carefully chose the ordering of labels so that we first
place those that are a priori hard, leaving the easiest ones for the
end. Hopefully, and we observe it in practice, this should help to
alleviate the inherent drawback of the greedy approach mentioned
above. Intuitively, the hardest labels are those for which there are
few candidates (x, y) that meet the constraints, or only candidates
for which the contribution to E would be high. We identify two
situations that generate such labels. The first situation is when the
anchor point is surrounded by other anchor points. If we place the
outer labels first, there will be no room left for the inner one. The
second situation is when the anchor point is “deep inside” an occu-
pied region, that is, the closest point x for which f(x) is small is
not that close. In other words, the leader line will be long.

Figure 4: (left) Example of Apollonius diagram. Note that bound-
aries of the cells are curved. (right) result of greedy placement with
random ordering of labels (top) and our ordering (bottom).

4.1 Ordering the labels

Here is a way we could solve the first problem alone. We compute
a Voronoi diagram of the anchor points. We then “peel” layers of
anchor points from the “outside” to the “inside”. More mathemat-
ically, we take all unbounded cells of the diagram. By property of
Voronoi, each such cell has exactly two adjacent unbounded cells.
This yields a circular ordering of the cells. We push the correspond-
ing anchor points in that order in a LIFO queue. We then recompute
the Voronoi diagram of the remaining anchor points and repeat the
process until no anchor point is left. Popping the queue would now
traverse the labels from the most surrounded one to the less sur-
rounded one.

Here is now a way to solve the second problem alone. Starting with
the function f , we compute a distance field. That is, for each x,
we find the distance to the closest pixel at which f is 0. Such a
distance field can be computed very efficiently on GPU as shown in
Section 5. We now evaluate the distance field at each anchor point
and sort in decreasing order.

The two solutions above yield different orderings and have com-
plementary advantages and drawbacks. Consequently, we need a
way to somehow merge them into one. Our solution is to use the
peeling algorithm described above, but with an Apollonius diagram,
also known as Additively weighted Voronoi diagram [Karavelas and
Yvinec 2002]. The Apollonius diagram of a set of site points ci

with weight wi is a subdivision of the plane into connected regions,
called cells, associated with the sites. As for Voronoi diagram, the
cell of a site (ci, wi) is the locus of points on the plane that are
closer to ci than any other cj . But this time, the distance of a point
x in the plane to a site ci is defined as |x−ci|−wi. In other words,
within a cell, the most important point around is the associated site.
The weight for each point is set to the value of the distance function.
In other words, each anchor point is ”considered” a disc tangent to
the closest silouhette, and we compute the Voronoi diagram of these
discs. Figure 4-left shows such a diagram and the resulting ordering
of anchor points.

4.2 Evaluating contribution

Now that the anchor points are ordered, we traverse them and for
each label i, we consider all possible locations (x, y) for the label
box (there is a finite number of pixels in an image so we can enu-
merate these locations). At each location, we test if the label box
can be placed there without violating the constraints. This can be

done in one operation using morphological operators, as now de-
scribed. We traverse all previously placed labels j. For each, we
compute the shadow region of the label box j and leader line j for
a point light source at anchor point i. This gives us the location
where there would be intersection between the leader line of label
i and other labels. We then perform a dilatation by the size of the
label box i, which is straighforward knowing the vertices of the
shadow region. We finally render all these regions in an offscreen
texture as a binary image. The resulting binary image contains 0
where we can place label box i without violating constraints, and
1 elsewhere. Figure 5 illustrates the process. There are two im-
portant points here. First, the constraint checking information is
available as a texture. Second, the use of dilation allows to test
validity using one texture lookup. Both properties allows to inte-
grate the constraint testing gracefully into a GPU implementation
based on matrix reduction as described in Section 5. Once this is

Already placed labels

Next Label to place Shadow regions

Dilated regions Candidate positions

Figure 5: Testing constraints against already placed labels using
morphological dilatation.

checked, we evaluate the contribution to E that would result from
placing the label box there. One interesting aspect of this approach,
besides making the test atomic, is that we can prevent label boxes to
be too close from each other by dilating by a larger rectangle than
the actual label box.

Looking at eq. (4), we see that we have to compute an integral
with the scene, which is potentially costly. To do it efficiently,
we compute a Summed Area Table (SAT) of the scene. SAT has
been originally introduced by [Crow 1984] as an alternative to mip-
mapping for texture filtering. It allows to compute the integral on an
axis-aligned boxes with only four arithmetic operations. Recently,
[Hensley et al. 2005] has presented a fast algorithm to compute SAT
on the GPU. Once again, if we want a “band” between objects sil-
houettes and label boxes, we can integrate on enlarged domains.

4.3 Managing temporal continuity

As mentioned earlier, we want the displayed label not to hinder
the navigation experience. The user should not be distracted by
popping or fast-moving labels. Intuitively, the label box placement
should be continuous, that is, if the user changes slightly the view-
point, the label box should be only slightly translated. The algo-
rithm we just described does not account for temporal coherence,
because the optimisation only involves the current viewpoint. To
address this, we add an extra term to the cost function, that penal-
izes a label’s position that would be too far from the label’s previous
position. This favors continuity whenever a solution exists.

Unfortunately, there are cases where continuity is not achievable.
As shown in [Strothotte 1998], there are discontinuities inherent to
the problem. Figure 6 shows another example.

Figure 6: Placement of labels can not be continuous. The three
images above shows three consecutive views (zooming out, then ro-
tating) of a torus with one label attached. In the first view, the label
must be placed inside the torus. In the last view, it cannot. There
will necessary be a time when the label needs to be “teleported”

To address this problem, we interpolate between the previous po-
sition of a label box, and its next position. That is, each label box
continuously tries to reach the position it has been placed too, but
its velocity is bounded, and it may need several frames to reach this
position. Fundamentally, the problem is not solved and the label is
actually “teleported”, but the process “smoothes” the teleportation
to avoid visual discontinuity. It serves only as a last resort, when
the configuration has no continuous solution.

Another source of discontinuities comes from the treatment of in-
visible anchor points. As mentioned in first paragraph of Section 4,
we only place labels for those anchor points that are visible. But
what happens when the visibility of an anchor point changes, for
example from visible to hidden? At the very moment before the
anchor point becomes hidden, the label box it still completely visi-
ble. If placement were continuous, at the moment after the anchor
point becomes hidden, the label box would be still largely visible. If
we simply remove the label when the anchors becomes hidden, we
will have a visual discontinuity because the anchor point is punc-
tual (with a null area) while the label box is not. This problem
is well known in NPR when attaching strokes to seed points on a
mesh[Vanderhaeghe et al. 2007].

Our solution to that problem is to make the point non-punctual.
That is, we test the visibility of a small 3D sphere around the an-
chor point. Using occlusion queries, we can count how much of
this sphere is visible, and we use that to blend the label box with
the background. In other words, we no longer have a binary visibil-
ity status, but a continuously varying one. This has the extra benefit
of avoiding the precision issue that would occur when testing the
visibility of a single point. The drawback, however, is that in cer-
tain situations, such as an anchor seen through fencing or through
folliage, the label will sort of ”blink” with alternate fade-in and
fade-out.

5 Implementation and Results

Previous section described our approach and its motivation. In this
section, we provide the details of implementation, and in particular
how well our approach maps to the GPU. The steps are:

1. Render occupancy function

2. Compute a Summed Area Table and distance transform on it

3. Compute order with Apollonius graph

4. For each label in that order

(a) Traverse all pixels in image

(b) If label box cannot be placed at that pixel, skip to next
pixel, otherwise evaluate the contribution if label box
was placed at this pixel

(c) Find the pixel with minimum contribution using matrix
reduction.

All these computations are performed on the GPU, typically ren-
dering a full screen quad with a specific fragment shader, in order
to transform an offscreen texture to another offscreen texture.

The key point is that there is very limited transfer to the CPU. In-
deed, we never need to transfer back the whole offscreen textures.
We compute Summed Area Table and Distance Transform with the
same single fragment shader using a jump flooding algorithm [Rong
and Tan 2006]. Step 3 requires the distance field only at the anchor
points. Step 4-b can perform all the constraint tests and cost func-
tion evaluation within the fragment shader because SAT and dilated
mask make those atomic operations. Finally, step 4-c is done us-
ing matrix reduction, which requires only log n passes where n is
the dimension of the offscreen textures, and a final readback of one
pixel (which contains in the R channel the minimum function, and
in the GB channels the coordinates at which it occurs).

Another keypoint is that the offscreen texture resolution is com-
pletely decorellated from the resolution of the observer’s window.
Its size only influences the number of (x, y) samples considered
to place the label boxes. Since the cost of our algorithm is directly
proportional to the resolution (through fill rate and matrix reduction
passes), we can scale the quality to the power of the graphic cards.
Note however that too small a resolution will cause flickering dur-
ing the navigation.

We implemented this approach using non-optimized C++ and
OpenGL code. Our tests were ran on a GeForce 7800, using an off-
screen resolution of 512 × 512. We are able to interactively place
up to 20 labels at 30Hz (but the scene itself can contains much more
labels, if not all of them have visible anchor points). Note that the
number of polygons in the 3D scene is not relevant for performance
measurements. Indeed, we need to render the scene once to obtain
the occupancy function. Every subsequent step is entirely in image
space and no longer depends on the geometric complexity of the
scene, but only on the offscreen resolution chosen.

The user can control globally the weighting coefficients α, . . . , γ
of eq.(4). In the future, the values of those coefficients could be
specified per label. This would allow to force certain labels to be
vertical/horizontal, while letting other free. The user can also tag
the surfaces with an importance value. In our demos, we have sim-
ply split the scene in two files, one with objects of importance 0
(typically walls) and one with objects of importance 1 (typically
furniture). Figure 7 shows some results. The accompanying video
shows how our algorithm behaves dynamically.

Our approach does have limitations. The main one is inherent to the
greedy approach. The last labels may be placed very far from their
anchor point, or in the worst case, may not be placed. Even if our
ordering heuristic greatly reduces this problem, there are typical
cases that fail for our algorithm. Because we peel anchor points
from the outside to the inside, the heuristic will be inefficient in the
case shown by Figure 8-left, where anchor points should intuitively
be peeled in the inverse order. Another bad configuration is that of
an extremely dense set of points. Even if we try to respect a circular
order in label insertion, we can have an anchor point that is blocked
between two previously placed labels. Finally, for large number of
labels, there may not exist a valid solution, unless we also optimize
over the sizes of the labels, which we do not handle for the moment.

6 Discussion and Future Work

We have presented a general formalization of dynamic labeling of
interactive scenes, together with a pratical greedy approach to solve
the NP-hard optimization problem. Our main contribution is to use
Apollonius diagrams to select labels in an appropriate order and
compensate the drawback of the greedy approach. Our second con-
tribution is an efficient implementation on the GPU, through the
use of SAT and morphological operations to make the evaluation
of constraints and costs atomic operations. As can be seen in the
video, this allows interactive navigation of 3D scenes with annota-
tions.

Our formulation is very general, even though we do not exploit it
entirely for the moment. In the future, we would like to optimize
also the sizes of the labels. We would also like to test offline op-
timization algorithms and compare the solution found with the ap-
proximate one found by our heuristic. Finally, we would like to
investigate recent advances in greedy approaches such as GRASP
[Cravo et al. 2008] to improve optimization without sacrificing per-
formance.

Acknowledgments

We thank Laurence Boissieux for 3d models and Alexandrina
Orzan, Kartic Subr and Pierre-Edouard Landes for their help with
regard to video editing and english reviewing, and for their moral
support during the last few days.

References

ALI, K., HARTMANN, K., AND STROTHOTTE, T. 2005. Label
Layout for Interactive 3D Illustrations. Journal of the WSCG 13,
1, 1–8.

BEKOS, M. A., KAUFMANN, M., SYMVONIS, A., AND WOLFF,
A. 2005. Boundary labeling: Models and efficient algorithms
for rectangular maps. In Proc. 12th Int. Symposium on Graph
Drawing (GD’04), Springer, J. Pach, Ed., vol. 3383, 49–59.

BELL, B. A., AND FEINER, S. K. 2000. Dynamic space manage-
ment for user interfaces. In UIST ’00: Proceedings of the 13th
annual ACM symposium on User interface software and technol-
ogy, ACM, New York, NY, USA, 239–248.

BELL, B., FEINER, S., AND HÖLLERER, T. 2001. View man-
agement for virtual and augmented reality. In UIST ’01: Pro-
ceedings of the 14th annual ACM symposium on User interface
software and technology, ACM, New York, NY, USA, 101–110.

CHRISTENSEN, J., MARKS, J., AND SHIEBER, S. 1995. An
empirical study of algorithms for point-feature label placement.
ACM Trans. Graph. 14, 3, 203–232.

CRAVO, G. L., RIBEIRO, G. M., AND LORENA, L. A. N. 2008.
A greedy randomized adaptive search procedure for the point-
feature cartographic label placement. Comput. Geosci. 34, 4,
373–386.

CROW, F. C. 1984. Summed-area tables for texture mapping. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 207–212.

DAICHES, E. 2006. Dynamic map labeling. IEEE Transactions on
Visualization and Computer Graphics 12, 5, 773–780. Member-
Ken Been and Senior Member-Chee Yap.

FEKETE, J.-D., AND PLAISANT, C. 1999. Excentric labeling:
dynamic neighborhood labeling for data visualization. In CHI
’99: Proceedings of the SIGCHI conference on Human factors
in computing systems, ACM Press, New York, NY, USA, 512–
519.

GÖTZELMANN, T., HARTMANN, K., AND STROTHOTTE, T.
2007. Annotation of animated 3d objects. In SimVis’07, SCS
Publishing House e.V., T. Schulze, B. Preim, and H. Schumann,
Eds., 209–222.

HANRAHAN, P. 2005. Realistic or abstract imagery: The future of
computer graphics.

HARTMANN, K., ALI, K., AND STROTHOTTE, T. 2004. Floating
labels: Applying dynamic potential fields for label layout. In
Smart Graphics, 101–113.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast summed-area table generation and
its applications. Computer Graphics Forum 24, 3, 547–555.

JACOBS, C., LI, W., SCHRIER, E., BARGERON, D., AND
SALESIN, D. 2004. Adaptive document layout. Commun. ACM
47, 8, 60–66.

KARAVELAS, M. I., AND YVINEC, M. 2002. Dynamic additively
weighted voronoi diagrams in 2d. In ESA ’02: Proceedings of
the 10th Annual European Symposium on Algorithms, Springer-
Verlag, London, UK, 586–598.

MARKS, J., AND SHIEBER, S. 1991. The computational complex-
ity of cartographic label placement. Tech. Rep. TR-05-91.

PREIM, B., RAAB, A., AND STROTHOTTE, T. 1997. Coherent
zooming of illustrations with 3d-graphics and text. In Proceed-
ings of the conference on Graphics interface ’97, Canadian In-
formation Processing Society, Toronto, Ont., Canada, Canada,
105–113.

RONG, G., AND TAN, T.-S. 2006. Jump flooding in gpu with appli-
cations to voronoi diagram and distance transform. In I3D ’06:
Proceedings of the 2006 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, 109–116.

STROTHOTTE, T. 1998. Computational Visualization: Graphics,
Abstraction, and Interactivity. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

VANDERHAEGHE, D., BARLA, P., THOLLOT, J., AND SILLION,
F. 2007. Dynamic point distribution for stroke-based render-
ing. In Eurographics Symposium on Rendering, Rendering Tech-
niques 2007, May, 2007, A K Peters Ltd, Grenoble, France,
J. Kautz and S. Pattanaik, Eds., 139–146.

VOLLICK, I., VOGEL, D., AGRAWALA, M., AND HERTZMANN,
A. 2007. Specifying label layout style by example. In UIST
’07: Proceedings of the 20th annual ACM symposium on User
interface software and technology, ACM, New York, NY, USA,
221–230.

Figure 7: Some results obtain with our method

Figure 8: When our algorithm fails to place a label, it is placed in the upper corner. Here are two cases where this may happen (left) the
ordering heuristic is designed to place labels ”around” and object, not ”inside” a hole, for which the peeling order should be reversed.
(right) dense set of labels quickly saturate free space and we can no longer place an anchor line.

