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Abstract

This paper introduces an accurate real-time soft shadow algorithm that uses sample based visibility. Initially,

we present a GPU-based alias-free hard shadow map algorithm that typically requires only a single render pass

from the light, in contrast to using depth peeling and one pass per layer. For closed objects, we also suppress the

need for a bias. The method is extended to soft shadow sampling for an arbitrarily shaped area-/volumetric light

source using 128-1024 light samples per screen pixel. The alias-free shadow map guarantees that the visibility is

accurately sampled per screen-space pixel, even for arbitrarily shaped (e.g. non-planar) surfaces or solid objects.

Another contribution is a smooth coherent shading model to avoid common light leakage near shadow borders

due to normal interpolation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism Shadowing

1. Introduction

Shadows are not only important for realism, but also to pro-
vide visual cues indicating the relative locations of objects.
Hard shadows appear only under directional light or point
light sources, which are rare in nature. Therefore, their look
seems often artificial whereas soft shadows are typically
more realistic and eye-pleasing.

This paper presents a method for interactive soft shadow ren-
dering from arbitrary area- or volumetric light sources. Con-
trary to most real-time algorithms, visibility is correctly sam-
pled, which is de facto standard for high quality soft shadows
and our method could replace raytraced solutions.

In many cases approximate solutions fail to con-
vince [HLHS03]. A physically plausible computation
for the irradiance at a point p is:

∫
S

L(p,y) v(p,y)
cos(p− y,ny) cos(y−p,np)

π||p− y||2
dy (1)

where S is the source, L is the incoming irradiance at p, v is
the binary visibility function, and nx the normal at x. Our ap-
proach could directly sample this equation, but to keep the
computations down, we use the common approximation to
separate lighting and visibility. The resulting integral of vis-

ibility is still challenging to approximate. The difference of
this factored solution is subtle when receivers are at a certain
distance from the source.

Our first contribution is a GPU-based alias free shadow map
implementation. In contrast to previous solutions, we typ-
ically require only one render-pass from the lightposition.
For closed (two-manifold) shadow casters, it is also more
robust and does not require any depth bias. The second and
main contribution of our paper is an efficient soft shadow
algorithm. Arbitrary volumetric and textured light sources
can be handled. Other contributions are an efficient sample
list representation(Section 3.1), a smooth coherent shading
model (see Section 4.3), temporal jittering (Section 7), and
an efficient penumbrae determination 4.1.

2. Previous Work

An exhaustive presentation of previous work is out of the
scope of this article, for this, we refer the reader to the sur-
veys by Hasenfratz et al. [HLHS03] and Woo et al. [WPF90].

Shadow Maps [Wil78] and Shadow Volumes [Cro77] are
the two most common algorithms to create hard shadows
on arbitrary receivers. While shadow volumes are fill-rate
demanding, shadow maps suffer from aliasing and require
careful adjustment of a scene dependent depth bias. This
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becomes necessary due to the limited depth precision and
a different discretization when rasterizing from the eye and
the light. Numerous solutions have been proposed, including
better adaption of the shadow map [MT04,WSP04,LSO07],
antialiasing [AMB∗07, PCdON04], or suggestions to lower
the bias-concerns [HN85,WE03,Woo92]. Alias-free shadow
maps exist based on either software rendering [AL04], new
hardware features (still not available) [JLBM05], or depth
peeling, requiring one render pass per depth layer [Arv07].
Heckbert and Herf [HH97] combine hard shadows on a
plane to create shadow textures. Soft Shadow Volumes
[AAM03] is inspired from the shadow volume algorithm,
but uses a wedge per silhouette edge, as seen from the light
source center, to add a corresponding part of penumbra. For-
est et al. [FBP06] introduced a method to improve the usu-
ally overestimated shadows, with a visibility buffer per sil-
houette to achieve more accurate occluder fusion. Laine et
al. [LAA∗05] used the soft shadow volumes to produce cor-
rectly sample based soft shadows for offline rendering.

Layered attenuation maps compute an approximate shadow
by combining several shadow maps [ARHM00]. Image-
based raytracing traces shadow rays through a set of depth
images produced from a discrete set of sample points over
the light source [ARHM00] or multilayer depth images in-
cluding transparencies [XTP07].

A single depth map is insufficient to generally represent an
occluder even for a non-pinhole camera (seeing around ob-
jects) like Mo and Wyman’s [MW07], but can lead to plau-
sible soft shadows as in [AHL∗06]. Here, each depth sample
is downprojected on a plane, where its corresponding oc-
clusion is accumulated. Guennebaud et al. [GBP06] take a
very similar approach. Instead of the downprojection, oc-
cluding pixels are searched in the depth map, which allows
self-occlusion. In [GBP07], they improve search and quality
by tracing occluder contours. Bala et al. [BWG03] also com-
bine sparse sampling and discontinuity events to achieve in-
teractive performance. Schwarz et al. [SS07] apply bit arith-
metic to combine samples correctly, but need depth peeling
for accurate shadows (see Figure 1). Kautz et al. [KLA04]

One layer
Complete

geometry

Figure 1: Left: One depth layer & accurate shading. This

case needs four and has an aligned face. Right: Our solution

have a CPU determination of illumination using bit arith-
metic. Each triangle of an LOD model is tested against each
vertex. A fast approximation is presented in [ED06], where
several scene slices are combined using a filtering process.

Our algorithm is most closely related to the work by Laine et

al. [LAA∗05] and Eisemann and Décoret [ED07]. Both com-
pute accurately sampled visibility. Soft Shadow Volumes are
combined with ray tracing in [LAA∗05]. The latter is GPU-
based, targets real-time purposes, and uses an overestima-
tion of the penumbra, the influence region from triangles to
project the occlusion onto a planar/height field receiver. We
refer to this paper for compelling arguments why classic ap-
proximations often give insufficient result.

3. Alias Free Shadow Maps for Hard Shadows

Overview - Initially, the scene is rendered from the eye
into a view texture to find points (view-samples) for which
shadow computation is needed. These are foremost the vis-
ible points from the eye. Samples on back-facing geometry
w.r.t. the light source can also be excluded since they self
occlude (see Figure 2). The view-samples are then projected
and stored in the shadow map (SM).

Visible & light backfacing

Visible & light frontfacing

Invisible & light backfacing 

Invisible & light frontfacing

Figure 2: Only visible and light front-facing view-samples

(non-dashed blue) are stored in the shadow map. The world

space coordinate and shading status of each sample is main-

tained in a local list at the shadow map pixel. For closed ob-

jects, only light back-facing triangles (red dashed and non-

dashed) are used as shadow casters.

Several of the view-samples can fall in the same pixel (see
Figure 3 - left), which is the source of aliasing in standard
shadow mapping. To avoid collisions, we store them in list’s
for each SM pixel (Section 3.1).

Next, we test whether each view-sample is lit or in shadow.
For this, we render the scene from the light source as fol-
lows. For each triangle t, a fragment shader will be executed
on the SM pixels that are partially intersected by t’s pro-
jection. We achieve this by using conservative rasterization
(Section 3.2). For each covered pixel, a fragment shader tra-
verses the list of view-samples stored at this location and
determines whether t hides the view-sample from the point
light. All triangles are treated separately. After each pass, the
shadow information (lit/unlit) is combined with the result for
the previously tested geometry (Section 3.3).

Once all triangles are processed, the shadows are applied by
rendering a screen covering quad in the observer’s view, and
each view-sample recovers its corresponding shadow value.

3.1. Constructing and storing the shadow map lists

Filling the shadow map lists with the view-samples uses
CUDA’s scattering capabilities. The process is memory com-
pact and faster than stencil routing [MB07].
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Figure 3: Memory layout of the SM Lists: view-samples pro-

jected into the SM (left). An offset and length per pixel allow

to access the sequentially stored lists (right).

Our goal is to store in each pixel of the SM a list length s and
a list offset. The list offset points into a global array, IA (see
Figure 3), from where all consecutive s elements correspond
to the entries of the local list. With this information, one
can iterate over the list elements of each SM pixel by read-
ing successive elements in IA. Further, each view-sample has
an offset into IA. It is stored in the view-texture and allows
to lookup a value, associated to a view-sample. In the con-
text of our shadow computation, each entry of IA holds the
view-sample’s status information (lit/shadowed) as well as
its world position.

Construction - To obtain this structure, we intialize the lo-
cal lists’ lengths in the SM to zero. Then, each view-sample,
pcam, is projected into the SM, to a position pSM . The cur-
rent local list size s at pSM is read and incremented instan-
taneously using the atomicInc() instruction in CUDA. The
read value is stored at pcam’s position in the view texture.
This process associates a unique index i to each view-sample
that can be used as an offset into the local list it projects in.
At the same time, on the SM side, this counter ultimately
indicates the number of elements in the pixel’s local list.

To concatenate the local lists in the global array IA, each
one needs a particular offset. For this, a running sum
scan [HSO07] is evaluated on the list length map. This pro-
cess interprets the 2D texture as a 1D array (line by line) and
stores in each pixel the sum of all proceeding values. These
are exactly the offsets that represent the start of each list in
the global array IA.

To directly access the data in IA for a view-sample, we find
its offset by adding the list offset of the list at pPM and the
view-samples index i. This final offset will not change until
the end of the frame and we store it in the view-texture.

Storage - In practice, instead of having one array IA with
heterogenous data (world position and lit/shadowed state)
we store them in separate arrays using the same offsets
we derived for IA. This allows us to pack the shadow data
densely in single bits. This is beneficial because even though
the world position remains the same throughout one frame,
the shadow state will be updated for each processed triangle
and it becomes possible to use the card’s bitwise blending
operation for this. Nowadays, eight render targets and 32-bit
channels allow us to update 1024 view-sample shadow state
values per list and render pass. If more view-samples are in a

 pixels

view-samples 

stored in SM pixel’s list

(i)

(ii)

(iii)

duplicated
a) b) c)Light’s view

Figure 4: a) Without conservative rasterization, only pixels

whose center is inside the triangle are rasterized. Since sam-

ple points can lie anywhere in the pixel, conservative raster-

ization is required. b) Conservative rasterization is done in

the geometry shader, by computing the convex hull of the tri-

angle’s vertex extension to a pixel-sized quad [HAMO05]. c)

Three cases can occur at corners of the convex hull. Perfor-

mance is improved significantly if the area is approximated

with only two vertices at each corner. For case iii) edges are

extended by the width of a pixel.

list, blocks of 1024 samples are treated, and multi-pass ren-
dering is used until all view-samples have been processed.
However, in practice, even 128 samples prove enough in
most cases.

3.2. Conservative rasterization

Having lists of view-samples in each pixel of the SM, we
next rasterize the scene’s triangles one by one into the SM.
For each pixel intersected by a triangle t, the local list is
traversed and each view-sample is tested for occlusion by
t with respect to the point light source. The rasterization
needs to be conservative (Figure 4). Otherwise, if the cen-
ter of the list pixel is not covered, no fragment would be
produced and thus the computation will not be applied to the
list’s elements (which in turn, could lie in the partially cov-
ered region). We use a version of Hasselgren and Akenine-
Möllers’s algorithm [HAMO05] executed on the geometry
shader, but we always output a fixed number of 6 vertices (4
triangles) instead of up to 9 vertices (7 triangles) since that
turned out to be significantly faster. Our tradeoff is that case
(iii), shown in Figure 4 c), can be overly conservative by one
pixel, which has no effect on correctness in our situation.

3.3. Evaluating visibility

A given view-sample is tested against a triangle t by com-
puting distances to the planes given by t’s supporting plane
and the pyramid defined by t and the light source. This has
the advantage that we can compute the plane equations once
in the geometry shader and then perform rapid tests in the
fragment shader.

Avoiding bias - The algorithm has a nice property: For
two-manifold (closed) shadow casters, either the light back-
facing surfaces or the light front-facing surfaces suffice to
determine the shadows. This fact can be utilized to avoid
incorrect self shadowing and the corresponding problem
of surface acne, without using the classic scene dependent
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depth bias [Wil78], triangle ID’s [HN85], or depth values in-
side closed objects [Woo92,WE03]. Light back-facing view-
samples do not need to be transferred into the SM lists, since
they always will be in shadow by the shading. Thus, se-
lecting only the light back-facing triangles as shadow cast-
ers eliminates self shadowing. A triangle will never be both
a shadow caster and receiver. This also avoids numerical
imprecision problems from floating point transformations
between coordinate systems [AL04, Arv07]. Theoretically,
problems might remain where front- and back-faces touch,
but in practice we did not observe such artifacts. No exam-
ple in the paper uses any depth bias (e.g. see left part of
Figure 14 that renders in 66 fps). To avoid even this poten-
tial problem, an epsilon value could be introduced to offset
the triangle’s supporting plane slightly. There are two pos-
sible offsets (toward the light and away). Due to our culling
strategy, self shadowing does not occur and both are valid.
One favors light-, the other shadow leaks. The latter are less
disturbing than light leaks (a bright spot in the dark is more
obvious than a slightly extended shadow). Moving the sup-
porting plane towards the light is thus the better choice.

A similar trick is actually often used for standard shadow
maps to ameliorate the problem of surface acne. For closed
shadow casters, only the back facing triangles with respect to
the light source are rendered into the shadow map. However,
since standard shadow maps are not alias-free, artifacts will
still appear near all silhouettes, and careful adjustment of a
bias and resolution is required to suppress the problems.

3.4. Short Discussion of Alias Free Shadow Maps

Our method shows many similarities with the work by John-
son et al. [JLBM05]. The main differences are that John-
son et al. proposed hardware extensions to treat more gen-
eral cases than just hard shadows. Their algorithm makes
heavy use of dynamically allocated linked lists. Besides the
adapted memory structures, a supplementary processing unit
and waiting queues were proposed to synchronize work. We
represent lists differently, making the access faster in our
context (linked list iterators need to follow pointers). They
are implementable on current hardware and can be easily
parallelized (only the cheap atomicIncr() operation needs
synchronization). No dynamic reallocation is required. Each
sample’s final position is given by an offset in a global
array, which is of constant length (tightly bound by the
view-texture resolution). We compute shadows only where
needed. Conservative rasterization improves upon previous
work. We introduced a way to avoid depth fighting and de-
crease the number of caster triangles. In a 5122 viewport, our
method is usually only ≈ 3 times slower than SM (81922).

4. Soft Shadows

Only two steps of the previous SM algorithm need to be
modified for soft shadows by arbitrary volumetric sources.
First, the conservative rasterization needs to cover the entire
umbra and penumbra region of each shadow casting triangle,

the so-called influence region. Second, the fragment shader
testing for occlusion needs to consider multiple light sam-
ples. This is solved using a 3D-texture as explained below
in Section 4.2. This pipeline is similar to [ED07]. The ma-
jor differences are that we treat arbitrary receivers with our
lists, compute tight influence regions, give an efficient way
to apply conservative rasterization to them, allow volumetric
light sources, and we introduce a temporal anti-aliasing.

4.1. Computing triangle’s influence region

A point p can only be shaded by a triangle t, if it lies in the
union of t’s projections from all light source points onto a
plane passing through p. The same holds, for a plane further
away (as seen from the light’s center). Therefore, conserva-
tive choices for an arbitrary point of the scene include the
far plane (see Figure 5), a floor plane (if the scene exhibits
one), or a plane at a distance of the furthest view-sample. As
can be seen in Figure 5 (right), when the distance between
the light center and far plane grows, the ratio between the
size of the influence region and the base of the light frustum
is asymptotically bound by the ratio of their respective an-
gles (green and blue). Thus, the size of the influence region
is typically more dependant on the triangle’s distance to the
light than the choice of the far-plane.

light frustumlight frustum
projected

in�uence region

in�uence regionFar Plane
Far Plane

Figure 5: Left: a triangle’s influence region at a far plane.

Middle: affected shadow map pixels when rasterizing the in-

fluence region. Right: the influence region size as seen from

the light, is asymptotically bound by the ratio between the

blue and green angle.

In the case of a planar source, it is relatively simple to cal-
culate the influence region from a shadow casting triangle.
Let us first concentrate on a spherical light source. Here, the
influence region on a plane is more complex. It is the con-
vex hull of the source’s projection through the vertices which
form ellipses in the plane.

Previous work approximated influence regions coarsely with
one bounding quad [ED07] and was restricted to planar
sources and receivers. We provide a solution that allows ar-
bitrarily tight bounding regions for spherical sources and ap-
ply it to arbitrary receivers (see Figure 5-left). For each tri-
angle vertex v, we compute a regular bounding polygon of
a desired degree (e.g. a hexagon for 6 points) for the light’s
silhouette as seen from v. This silhouette is a circle whose
radius and position can be easily inferred and thus the con-
struction of a bounding polygon Pv is direct. We then project
Pv through v onto the far plane. This is done by comput-
ing the intersection of the lines through v and each vertex
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of Pv with the desired far plane. These intersection points
form bounding polygons of the ellipses and their convex
hull bounds the influence region. The convex hull is com-
puted with Graham’s scan [Gra72]. The method is O(n) if all
points are in clockwise angular order. This is easy to assure
for the points of each ellipse, but these point groups do not
share a common center. Fortunately, merging them is possi-
ble in O(n) time. This makes the full convex hull computa-
tion very rapid. In practice, we chose hexagons and CUDA
was found to be up to twice as fast as geometry shaders.

Conservative rasterization of the influence region is done by
adapting the rules of Figure 4. We only output one vertex in
case (i) and for case (ii) if the angle between the edges is <

90◦ their intersection point is used to output only one vertex.
To ensure conservative coverage of the influence regions for
an arbitrary volumetric light source, we first approximate it
by an ellipsoid. A virtual scaling of the entire scene allows us
to reestablish a spherical light source for which the previous
algorithm can be used.

4.2. Sampling Visibility of Volumetric Sources

For hard shadows, we used a single bit to represent the vis-
ibility of the point light source. To compute soft shadows,
we associate a bitmask to each view-sample, where each bit
corresponds to the visibility of one light sample. This means
that 8 MRTs allow us to output 128 light samples for 8 view-
samples in a single pass. Multipass rendering is used until all
view samples are computed.

To sample visibility in the influence region, we use a light
sample dependent lookup table LU . LU takes a 3D-plane as
input and returns a bit pattern corresponding to the light-
samples behind the plane (Figure 6 top-left). Combining the
bitmasks of the planes defined by the view-sample and the
edges of the triangle t via an AND operation establishes
the correct visibility with respect to t (Figure 6 top-right).
This can be seen as an extension of the method by Eisemann
and Décoret [ED07] to handle non-planar light sources and
shadow receivers. To accumulate the results, we use, as be-
fore for the hard shadows, the blending capacities of graph-
ics hardware (namely the bitwise OR operation).

We can represent LU with a 3D texture by describing the
plane with two angles and a distance.

To minimize discretization errors, we choose LU’s size rela-
tive to the number of samples, typically 1283 per 3D-texture.
It leads to good shadow quality with moderate memory cost.
If more samples are needed, we can precompute additional
k LU-textures for k × 128 different sample locations. As
pointed out in [ED07], for symmetric sources, sample tex-
tures can be reused by rotating the normal around the sym-
metry axes. This can be done on a per pixel basis to achieve
jittering at almost no cost. We further propose temporal jit-
tering where samples change in each time frame. The solu-
tion converges rapidly to a high quality image via accumu-

Rasterized pixel

2. combine edges

(AND bitmasks)

screen samplescreen sample

bitmask for one edge bitmasks

Blocked samples

1. sample lookup

for each edge

Figure 6: Visibility is tested for each view-sample in each

rasterized fragment (bottom). A texture lookup returns a bit-

mask indicating the light samples behind the plane defined

by an edge and the view-sample (left). The occluded light

samples are identified by AND:ing these values (right). The

light samples can be arbitrarily located.

Figure 7: Left: No jittering. Right: jittering and frame accu-

mulation, after a second. Both: 128 light samples.

lation, if the scene is static and the camera does not move
(see Figure 7). As pointed out in [SJW07], lower quality is
acceptable for moving cameras and for light designers it is
useful to have a fast feedback concerning shadows.

4.3. Optimizations

Parametrization - To keep view-sample lists short, exist-
ing techniques to maximize the SM resolution (e.g. [MT04])
can be used to optimize the sample repartition. A good solu-
tion, we employed, is to fit the frustum to a minimal 2D-axis
aligned bounding box of the projected view-samples, and
we readapt the light frustum between each pass of our algo-
rithm. The parametrization lead to speed-ups of around 30%
in scenes like one in Figure 9. The same step also computes
the maximum view-sample distance to the light source. This
allows us to fit an optimal far plane. This keeps influence
regions smaller, but its influence on performance is weaker.

Restrict computations - With the stencil buffer we can
block all pixels with empty lists. Further, penumbrae can
only be cast from silhouette edges. Here, silhouette means
that there is a point on the light for which the edge is a sil-
houette. Their detection is done in the geometry shader or
using CUDA by computing the relative position of the light
w.r.t. the planes defined by the adjacent triangles [LAA∗05].
The edges’ influence region is then rendered into the sten-
cil of the SM. This blocks unnecessary computations in the
umbra/lit region, where a hard shadow from any sample
point is enough. The same reasoning applies for triangles.
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Figure 8: With standard vertex normals, light leaks in back-

faces (red line). We bend normals for coherent shading.

If models are watertight, triangles can be eliminated based
on conservative back-face culling [ED07], also we can cut
off the influence region based on the triangle’s supporting
plane [LLA06], this integrates well in our convex hull com-
putation. Both measures made the soft shadow pass win up
to 50%. Another possibility would be to apply a perceptual
measure, e.g. based on the frequency of standard lighting and
texturing to choose only a view-sample subset. A reconstruc-
tion step yields the final image. A first step in the context of
shadows was presented in [GBP07]. We did not rely on this
for our timings to show the actual cost.

Shading - The standard Gouraud/Phong shading models
use per vertex normals for a smooth interpolant. This might
lead to light bleeding into back-facing triangles (see fig-
ure 8). It introduces artifacts at light silhouette edges be-
cause accurate shadows lead to self-shadowing and create a
strong discontinuity. This is particularly disturbing for hard
shadows. To avoid this behavior, we bend vertex normals
with respect to the adjacent faces. The geometry shader in-
put (triangles with adjacency) does not provide all triangles
incident to a vertex. Nevertheless, passing face normals in a
texture and adjacent face indices as texture coordinates al-
lows a rapid GPU evaluation. In case the number of neigh-
bors is small, normals can be sent directly through texture
coordinates. Interpolating the minimum illumination based
on adjacent face normals delivers a smooth result that en-
sures blackness of all light back-facing triangles. Formally,
we compute at each vertex: lbend = minF∈ad j(v)dot(l,nF)
where nF is the normal of face F , l the light vector, and
ad j(v) the adjacent faces to v. Per fragment, we can securely
and continuously blend back to Phong illumination l f , us-
ing: α := min(1,max(c lbend ,0)), α l f +(1−α) lbend . c := 3
works well. Soft shadows are smoother and thus bent nor-
mals with respect to the source’s center are often sufficient.
The definition could be extended to the minimum with re-
spect to the entire source or a bounding volume (e.g. a cube).

5. Results

All measurements were performed using 5122 resolution
and a Geforce 8800GTS-512. Five test scenes where used.
A fairy of 734 triangles, columns of 840 triangles, a hair-
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Figure 9: Sponza (73k tris), this view: 20k shadow casting

tris, 256 light samples. Inlay: SM list length information.

Figure 10: Shadow quality: 128 samples/512 samples

ball of 44ktris, a torus-knot of varying tessellation degrees,
the Sponza Atrium of 73k triangles, and very high polygon
scenes like a ring in grass of 379ktris and others shown in
Figure 15. Figure 10 stresses the sampling quality for a large
penumbra. The visual difference between 512 and 1024 sam-
ples was negligible in this case. Figure 12 shows a linear de-
pendence when varying the light radius. For the case of in-
creasing samples (Figure 13) the rendering cost roughly only
doubles from 128 to 1024. Our method is about an order
of magnitude faster than using a corresponding amount of
shadow maps, which would be an alternative for producing
sample based soft shadows on arbitrary receivers, but they
exhibit aliasing artifacts. It works robustly even for compli-
cated scenes like the hairball (Figure 14).

Figure 11 uses 128 light samples and varies the tessellation
degree. In this case, the algorithm behaves mostly linear in
the number of triangles. Nevertheless our optimizations (sec-
tion 4) to transfer only visible view-samples and eliminate
empty lists (figure 9 shows typical statistics), as well as the
restriction to penumbra regions lead to important gains. The
rightmost image in Figure 15 shows a scene from [LAA∗05].
The computation time using Laine et al.’s algorithm reported
75 seconds for a 5122 image of this scene. In contrast, we
achieve a frame-rate of almost constant 0.65 Hz indepen-
dently of the viewpoint, which corresponds to a speed-up of
48.75. Figure 9 shows the Sponza Atrium, running in 2.6 fps
with 256 light samples, compared to 9 seconds for Overbeck
et al. [ORM07]. We thus provide a 23.4 times speedup. In-
creasing the number of samples in this scene did not lead to
noticeable quality improvements, but in general, Overbeck
et al.’s solution is exact, not sampled like ours.
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1,200 triangles

21 fps

12,000 triangles,

8 fps
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4 fps

Figure 11: Varying number of triangles.

r = 4
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r = 16

7.1 fps

r = 8

12 fps

Figure 12: Varying light radius r. 256 samples. 6K tris.

6. Conclusion and Future work

We presented an accurate solution to the general soft shadow
sampling problem. Our soft-shadow algorithm outperforms
Soft Shadow Volumes for ray tracing by 1-2 orders of magni-
tude, and shadow rays with 2-3 orders and has similar image
quality. Our alias free shadow maps, have comparable per-
formance to [LSO07], but the implementation effort of our
solution is much lower and has virtually infinite resolution.

Approximate transparency is possible by multiplying the
transparency values of shadow casting triangles and weight-
ing by the percentage of coverage. For correct transparency,
each sample would need to store one RGBA-value per light
sample, which requires more bits than currently available.

We considered using silhouette edges to integrate visibility
for each view-sample [LAA∗05], but then counters (instead
of bits) are needed for each light sample, reducing their num-
ber. Potential problems are inaccurate depth complexity and
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Figure 13: Performance comparison vs. shadow maps.

Figure 14: Hard and soft shadows (44ktris).

the limited counters, but transparency can be handled grace-
fully. Concurrently, such a method was published [FBP08].
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