Real-time Realistic Rendering and Lighting of Forests: Appendix

Eric Bruneton and Fabrice Neyret

i 2 P . z /

1 *r e / //1 ’ S
’ ‘ T A/ N2

n: ‘('A\V“‘EIA‘Q a ~r ~% <\2/ BNNE %

" I NN %

Figure 1: Partition of the hemisphere used for our precomputed views, for n = 3 (each vertex corre-
sponds to a precomputed view direction). From left to right: hemisphere in perspective, viewed from top,
after mapping to a square, and after scaling and rotation of this square.

A View interpolation A.1 Mapping and partition

This appendix describes how we compute the 3 Let w = [ws,wy,w.] be a unit direction vector in
nearest precomputed views and the corresponding the upper hemisphere (w, > 0). We map the quad-
weights, in step 1 of our runtime shape reconstruc- rand defined by w, > |w,| into the square quadrant
tion algorithm (see Section 5). defined by (see Fig. 1):

The idea of our method is to map the upper hemi-

sphere (see Fig 1 left) to a square (see Fig. 1 1r%ght)7 - 2n arccos(w,) (1)
and to compute the nearest views and the inter- us

polation wei-ghts in this deformed space instead of y = wy 2n arccos(w,) 2)
on the hemisphere. Indeed, we can then decom- Wy T

pose this square into a regular grid of triangles, so

that computing the nearest view directions (i.e. the where n is a natural number controlling the number

nearest grid vertices) and the corresponding inter- of precomputed views (we use n = 9, yielding 181

polation weights (i.e. the barycentric coordinates views). We then scale and rotate this square quad-

of a point in a triangle) becomes trivial. rant to get a more convenient, axis aligned quad-
In practice, in order to get precomputed view di- rant defined by:

rections that are almost uniformly distributed on

the hemisphere, we do not decompose its square =ty _ (1% arccos(w;) (3)
mapping into one regular triangle grid, but into 2 Wy T
four symetrical grids, one per quadrand (see Fig. 1 T4y w,) arccos(w,)

i ‘es imi _ j= =nl(1+)= (4)
right). The four cases are very similar, and for clar 2 Wa p

ity we present only one case here (in gray in Fig. 1.
The full algorithm is presented in Section A.3).
The following sections define our mapping be- A.2 View interpolation
tween the hemisphere and the square, and the par-
tition of the square. The interpolation algorithm The 3 nearest views corresponding to w, and the
then follows naturally. corresponding interpolation weights, are then easy

to compute. Let
w; =i — |i] (5)
wj =j— 4] (6)
then the nearest views are
(17], |7]) with weight 1 —w; —w; (7)

(7] + 1, |7]) with weight w; (8)
(l2], [j] + 1) with weight w; (9)

if w; +w; <1, or

(li) +1, 4] + 1) with weight w; +w; — 1 (10)

(7] + 1, [7]) with weight 1 — w; (11)

(li],] 4+ 1) with weight 1 — w; (12)
otherwise.

A.3 Full algorithm

The formulas for the other quadrants are similar.
The four cases can thus be handled in a unified
way, as shown below (GLSL code whose input is
W=w and whose outputs are the views v and the
weights w — and where N=n):

bool q = abs(W.x) > abs(W.y);

float s = q ? W.y / W.x : -W.x / W.y;
float t = acos(W.z) * (N / PI);

float i = (1.0 - 8) * t;

float j = (1.0 + s) * t;

int fi = int(floor(i));
int £fj = int(floor(j));

float wi = i - fi;
float wj = j - £j;
float wk = 1.0 - wi - wj;

bool b = wk > 0.0;
int Q = int(sign(W.x + W.y));
ivec3 I = Q * ivec3(b ? fi : fi + 1, fi + 1, fi);

ivec3 J = Q * ivec3(b ? £fj : £fj + 1, £j, £fj + 1);
v =q ? view(I,J) : view(-J,I);
w =Db ? vec3(wk, wi, wj)

: vec3(-wk, 1.0 - wj, 1.0 - wi);

where view (i, j) computes a view number between
0 and 2n(n + 1) inclusive, as follows (see Fig. 1
right):

ivec3 view(ivec3 i, ivec3 j) {

return ix(ivec3(2*N+1)-abs(i))+j+ivec3(N*(N+1));
}

These view numbers can then be used to access
the precomputed view images in a 2D texture array.

