
Real-time Realistic Rendering and Lighting of Forests: Appendix

Eric Bruneton and Fabrice Neyret

Figure 1: Partition of the hemisphere used for our precomputed views, for n = 3 (each vertex corre-
sponds to a precomputed view direction). From left to right: hemisphere in perspective, viewed from top,
after mapping to a square, and after scaling and rotation of this square.

A View interpolation

This appendix describes how we compute the 3
nearest precomputed views and the corresponding
weights, in step 1 of our runtime shape reconstruc-
tion algorithm (see Section 5).

The idea of our method is to map the upper hemi-
sphere (see Fig 1 left) to a square (see Fig. 1 right),
and to compute the nearest views and the inter-
polation weights in this deformed space instead of
on the hemisphere. Indeed, we can then decom-
pose this square into a regular grid of triangles, so
that computing the nearest view directions (i.e. the
nearest grid vertices) and the corresponding inter-
polation weights (i.e. the barycentric coordinates
of a point in a triangle) becomes trivial.

In practice, in order to get precomputed view di-
rections that are almost uniformly distributed on
the hemisphere, we do not decompose its square
mapping into one regular triangle grid, but into
four symetrical grids, one per quadrand (see Fig. 1
right). The four cases are very similar, and for clar-
ity we present only one case here (in gray in Fig. 1.
The full algorithm is presented in Section A.3).

The following sections define our mapping be-
tween the hemisphere and the square, and the par-
tition of the square. The interpolation algorithm
then follows naturally.

A.1 Mapping and partition

Let ω = [ωx, ωy, ωz] be a unit direction vector in
the upper hemisphere (ωz ≥ 0). We map the quad-
rand defined by ωx > |ωy| into the square quadrant
defined by (see Fig. 1):

x =
2n

π
arccos(ωz) (1)

y =
ωy

ωx

2n

π
arccos(ωz) (2)

where n is a natural number controlling the number
of precomputed views (we use n = 9, yielding 181
views). We then scale and rotate this square quad-
rant to get a more convenient, axis aligned quad-
rant defined by:

i =
x− y

2
= n

(

1−
ωy

ωx

)

arccos(ωz)

π
(3)

j =
x+ y

2
= n

(

1 +
ωy

ωx

)

arccos(ωz)

π
(4)

A.2 View interpolation

The 3 nearest views corresponding to ω, and the
corresponding interpolation weights, are then easy

1

to compute. Let

wi = i− bic (5)

wj = j − bjc (6)

then the nearest views are

(bic, bjc) with weight 1− wi − wj (7)

(bic+ 1, bjc) with weight wi (8)

(bic, bjc+ 1) with weight wj (9)

if wi + wj < 1, or

(bic+ 1, bjc+ 1) with weight wi + wj − 1 (10)

(bic+ 1, bjc) with weight 1− wj (11)

(bic, bjc+ 1) with weight 1− wi (12)

otherwise.

A.3 Full algorithm

The formulas for the other quadrants are similar.
The four cases can thus be handled in a unified
way, as shown below (GLSL code whose input is
W=ω and whose outputs are the views v and the
weights w – and where N=n):

bool q = abs(W.x) > abs(W.y);

float s = q ? W.y / W.x : -W.x / W.y;

float t = acos(W.z) * (N / PI);

float i = (1.0 - s) * t;

float j = (1.0 + s) * t;

int fi = int(floor(i));

int fj = int(floor(j));

float wi = i - fi;

float wj = j - fj;

float wk = 1.0 - wi - wj;

bool b = wk > 0.0;

int Q = int(sign(W.x + W.y));

ivec3 I = Q * ivec3(b ? fi : fi + 1, fi + 1, fi);

ivec3 J = Q * ivec3(b ? fj : fj + 1, fj, fj + 1);

v = q ? view(I,J) : view(-J,I);

w = b ? vec3(wk, wi, wj)

: vec3(-wk, 1.0 - wj, 1.0 - wi);

where view(i,j) computes a view number between
0 and 2n(n + 1) inclusive, as follows (see Fig. 1
right):

ivec3 view(ivec3 i, ivec3 j) {

return i*(ivec3(2*N+1)-abs(i))+j+ivec3(N*(N+1));

}

These view numbers can then be used to access
the precomputed view images in a 2D texture array.

2

